
RE:BT-Espresso: Improving Interpretability and Expressivity of
Behavior Trees Learned from Robot Demonstrations

Adam Wathieu*1, Thomas R. Groechel*2, Haemin Jenny Lee2,
Chloe Kuo2, and Maja J. Matarić2

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI:

Abstract— Behavior trees (BTs) are hierarchical agent control
architectures popular for robot task-level planning that can be
autonomously learned from robot demonstrations via decision
tree (DT) intermediaries, making them accessible to non-expert
users. Conversion algorithms from DTs to BTs, such as the
BT-Espresso algorithm, focus on replicating DT logic in a BT
format but do not exploit the strengths of the BT architecture.
We introduce the Representation Exploitation of BT-Espresso
(RE:BT-Espresso) algorithm, which builds on BT-Espresso and
improves the learned BT’s interpretability and expressivity.
RE:BT-Espresso improves interpretability by removing logical
redundancies in the generated BTs and improves expressivity
by exploiting desired BT structures, such as adding Inverter
nodes, Repeater sequences, and Parallel Selector Action nodes
that gives the user a choice of actions for state spaces that
did not resolve to a concise action in the DT. The RE:BT-
Espresso algorithm was evaluated against BT-Espresso using
demonstration data synthesized by BTs. When compared to
the synthesized BTs using graph edit distance (GED), RE:BT-
Espresso outscored BT-Espresso on 54 subtrees, tied on 178, and
lost on 2. Further, the proposed reduction strategies reduced
the number of nodes in a generated tree by a median of 7.82%.
The results validate improved interpretability and expressivity
of learned RE:BT-Espresso task-level BT policies from robot
demonstration.

I. INTRODUCTION

Programming high-level robot tasks involving many prim-
itive actions typically requires a scalable control architec-
ture and robot programming expertise. Task-level control
architectures sequence a robot’s primitive actions toward a
high-level goal-directed task. Various architectures, such as
Finite State Machines (FSMs), decision trees (DTs), and
neural networks (NNs), have been used to model task-
level behavior by representing the robot states and their
respective transitions. However, they have various drawbacks
with regard to modularity, reactivity, and interpretibility [1].
FSMs, for example, become unwieldy with increased robot
behavior complexity [2], DTs are not designed to be reactive,
and NNs are difficult to readily interpret [3].

Recently, behavior trees (BTs) have become a popular
alternative for task-level control due to their interpretability,

*Adam Wathieu and Thomas Groechel are co-first authors.
This work was supported by grant NSF IIS-1925083 and the USC

Robotics and Autonomous Systems REU summer program
1 Author is with the Department of Computer Sci-

ence, Northwestern University, Evanston, IL 60208, USA
adamwathieu2022@u.northwestern.edu

2 Authors are all with the Interaction Lab, Department of Computer
Science, University of Southern California, Los Angeles, CA 90089, USA
{groechel,haeminle,cmkuo,mataric}@usc.edu

Fig. 1: Left: Behavior tree structures generated from BT-Espresso
algorithm. Right: Improvements of the same structures with respect
to interpretability and expressivity from the RE:BT-Espresso algo-
rithm, as described in Sec. III. Last action taken diagrams (Sec.
III-B) are shown in Figs. 2 and 3, further improving expressivity.

modularity, and reactivity [4]. Creating a handcrafted BT
policy is challenging and often produces behaviors that do
not adjust to the robot’s environment or user needs. Prior
work has proposed learning BTs from demonstration, which
allows the robot to learn a task by modeling the data collected
from a demonstration [5], [6].

The primary way to learn a BT from demonstration is to
first train a decision tree (DT), and then convert the DT
to a BT [5], [6]. However, current DT-to-BT conversion
algorithms, such as the naive algorithm [5] and BT-Espresso
algorithm [6], focus on replicating the DT logic in a BT for-
mat, but do not fully leverage the interpretable and expressive
power of the hierarchial BT architecture. As a result, these
algorithms generate formulaic BTs equivalent to evaluating
the original DT at every timestep.

We introduce the Representation Exploitation of BT-
Espresso (RE:BT-Espresso) algorithm, which builds on BT-
Espresso and improves the learned BT’s interpretability and



expressivity. Murdoc et al. [7] define Post Hoc Interpretation
as the analysis of a trained model to provide insights into the
learned relationships between labels and features. To improve
the interpretability of generated BTs, the RE:BT-Espresso
algorithm removes redundant nodes that complicate the re-
lationships between labels and features without contributing
logically to the control policy. The expressivity of a BT is
defined as the breadth of behaviors that can theoretically be
constructed [8]. The RE:BT-Espresso algorithm implements
features that expand the breadth of behaviors that can be
generated as compared to the BT-Espresso algorithm.

To evaluate RE:BT-Espresso, simulated robot BT demon-
stration data were executed on both BT-Espresso and RE:BT-
Espresso. The algorithms were evaluated using graph edit
distance (GED) for similarity to the original simulated BT.
From 234 simulated subtrees, RE:BT-Espresso outscored
BT-Espresso on 54 subtrees, tied on 178, and lost on 2.
Furthermore, the proposed reduction strategies reduced the
number of nodes in a generated tree by a median of 7.82%.
The results demonstrate the ability of RE:BT-Espresso to
generate BTs with enhanced interpetability and expressivity.

II. BACKGROUND AND RELATED WORK

A. Behavior Trees

BTs were popularized by the video game industry to create
AI for non-player characters (NPCs) [9]. Widely used in
popular video games like Halo and Spore, BTs served as
an intermediary data structure between the game designers
and programmers [10]. They were intuitive enough for the
designers to use to construct the behavior of the NPCs
and technical enough for the programmers to execute in
their game engine. In robotics, the notion of BTs relates
to behavior-based control [11] and has recently been more
widely adopted over other high-level robot control methods,
such as finite state machines and neural networks [4].

In high-level task planning in robotics, a good control
policy should be interpretable, modular, and reactive [1]. An
interpretable policy allows users to understand how and when
the behaviors of the robot are triggered. A modular control
policy is one whose design allows the user to modify and
reuse parts of the policy in real time. A reactive control
policy should execute in real time, and be responsive to
sudden changes to its world states.

BTs have all these desired qualities, and have therefore
emerged as a popular alternative to other control architectures
for high-level task control in robotics [6], [12]. BTs are
interpretable, as the user can trace from the root down to
the execution nodes and see in real time what action the
robot is taking and why. Additionally, since every node has
the same interface, subtrees can be moved and manipulated,
allowing BTs to be modular. Lastly, BTs are reactive. By
rerunning at every tick, they react to changes in the state
space or action space in real time.

Iovino et al. [4] and Colledanchise et al. [12] provide
detailed reviews of the function and use of BTs in robotics.

B. Learning Behavior Trees

Constructing BTs for robot control policies is an active
area of study. Manually designed BTs have been commonly
used, but result in rigid, inflexible robot behavior.

Reinforcement Learning Theory and Genetic Program-
ming have both been used to generate BTs. Banerjee et
al. [13] used an action-quality function to choose the best
action given a certain state, and converted this function
to a BT via a decanonicalization algorithm. Li et al. [14]
merged reinforcement learning nodes with BT nodes to
create a mixed MDRL-BT. Zhang et al. [15] used genetic
programming, evolving a BT with hybrid constraints and
using an evaluation function to select higher fitness nodes to
reproduce. These methods required the use of reward func-
tions that are task-specific and hence difficult to generalize.
Additionally, they require many iterations of the simulation
in order to create an accurate BT. Alternatively, learning from
demonstration (LfD) allows for learning an arbitrary task by
creating the BT from demonstration data [4] [16].

C. Decision Tree Intermediaries for LfD Behavior Trees

The primary way to use LfD to generate BTs is to first
train a DT classifier on robot demonstration data using the
actions as labels and world state space as features. The DT is
then converted to a BT, since BTs have been shown to be a
generalization of DTs, and can mimic the logic of DTs [17],
[18]. Multiple machine learning algorithms are effective for
this purpose, such as ID3, C4.5, and CART [18].

To convert the DT to a BT, Sagredo-Olivenza et al. [5]
used the naive DT-to-BT algorithm, shown in [6], with
some manual optimizations. The naive DT-to-BT algorithm
leverages the fact that the Sequence control node is analogous
to the logical AND, and that the Selector control node is
analogous to the logical OR. French et al. [6] built on
the naive algorithm with the BT-Espresso algorithm, which
uses the UC Berkeley Espresso logic minimization algorithm
to heuristically reduce the DT logical statements, before
converting it to a BT. The BT-Espresso algorithm generates
BTs that are consistent with the original DT. However, the
generated BTs leave room for further logic minimization
and improved interpretability. Additionally, no techniques are
used to utilize and exploit unique BT structures and nodes,
and thus the algorithm fails to leverage the expressive nature
of BTs. This work addresses both of these limitations using
the algorithms and techniques described below.

III. TECHNICAL APPROACH
A. Definitions and Assumptions

The following definitions and assumptions serve as moti-
vation for our improvements of the BT-Espresso algorithm:

1. Murdoc et al. [7] define Post Hoc Interpretation as
the analysis of a trained model to provide insights into
the learned relationships between labels and features. Since
logical redundancies in a BT model make the relationships
between labels and features superfluous, we assume that
removing logical redundancies from an existing BT model
makes the model more interpretable.



2. BT expressiveness is defined as the breadth of behaviors
that can theoretically be constructed [8]. This work adds
more unique control nodes and BT structures thus increasing
BT expressivity when compared to the original BT-Espresso
algorithm [6].

B. RE:BT-Espresso algorithm

We improved the RE:BT-Espresso algorithm, which con-
verts the DT to a BT, to make the BTs both more inter-
pretable and more expressive (Alg. 1). Note the root node can
be switched out for a Selector or Sequence node depending
on the task and actions. A Parallel node was chosen to stay
consistent with the original BT-Espresso algorithm.
Increasing Interpretability

To create BTs that are more interpretable, the RE:BT-
Espresso algorithm generates less redundancy in the BTs
while maintaining the same logic. This is achieved by using
the following two methods.

Float Representation Reduction: The Berkeley Espresso
logic minimization algorithm [19] minimizes the complexity
of Boolean expressions, but forgoes logic reductions of the
conditional statements that make up each Boolean value.
Consequently, the BT-Espresso algorithm generates trees
that have Condition nodes that logically subsume other
Condition nodes under the same parent node (see Fig. 1).
This leads to redundant logic and bloated BTs with reduced
interpretability. The RE:BT-Espresso algorithm removes all
float conditions that are logically subsumed by another
float condition within the same expression, leading to fewer
Condition nodes while maintaining the same logic (Alg. 1,
line 5). The resulting trees are less redundant and more
interpretable.

Factoring-Out Condition Nodes: The Berkeley Espresso
logic minimization algorithm returns the set of Boolean
expressions in disjunctive normal form (DNF). This often
results in the same conditional statements appearing in every
conjunction of a Boolean expression, making the gener-
ated BT-Espresso BT evaluate some Condition nodes many
times. The RE:BT-Espresso algorithm factors out common
Condition nodes via the distributive law. Specifically, the
algorithm removes the common Condition nodes from each
conjunction and places them under a Sequence node. The
reduced conjunctions are then placed beneath a Selector
node, which is placed under the Sequence node, to the
right of the common Condition nodes (Alg. 1, line 6). This
factoring places conditions that must be true for an action
to trigger higher in the BT while also removing repetitive
nodes, resulting in a more interpretable BT (Fig. 1).
Increasing Expressivity

To create more expressive BTs, the RE:BT-Espresso algo-
rithm generates more unique Control nodes and BT structures
when compared to its predecessor, which serve to increase
the breadth of behaviors that can theoretically be constructed.

As will be seen, Parallel Selector Action nodes and
Last Action Taken Sequences serve as Suggested Alternate

Algorithm 1: RE:BT-Espresso. Convert a decision tree (dt) into
a behavior tree (bt) heuristically minimizing the number of nodes.
Rules are Boolean algebra expressions and dnfs are Boolean algebra
expressions in disjunctive normal form. Algorithm additions to BT-
Espresso [6] marked in blue. Algorithm notation consistent with
notation used in [6].

Input: dt - a decision tree
Output: a behavior tree

1: function RE:BT_ESPRESSO(dt)
2: rules ← DT_TO_RULES_PSA(dt)
3: inv_set ← BUILD_INV_SET(rules)
4: rule_dnfs ← LOGIC_MINIMIZER(rules)
5: rule_dnfs ← FLOAT_REDUCTION(rule_dnfs)
6: rule_dnfs ← PULLOUT_COMMON(rule_dnfs)
7: root ← Parallel()
8: for dnf in rule_dnfs do
9: seq ← Sequence node

10: act ← dnf.action
11: or ← Selector node
12: seq.add_child(or)
13: seq.add_child(act)
14: for conjunction in dnf do
15: and ← Sequence node
16: for literal in conjunction do
17: if literal in inv_set then
18: inv ← Inverter(INV(literal))
19: and.add_child(inv)
20: else
21: cond ← Condition(literal)
22: and.add_child(cond)
23: end if
24: end for
25: or.add_child(and)
26: end for
27: root.add_child(seq)
28: end for
29: LAT_trees ← GEN_LAT_TREES(rule_dnfs)
30: for subtree in LAT_trees do
31: root.add_child(subtree)
32: end for
33: return root
34: end function

Expressive Subtrees (SAES). These subtrees are created as a
set of possible trees for an end user to explore adding to the
main tree. Collisions would be created if these subtrees were
attached to the root of the generated tree without end user
oversight. Thus, an end user is needed to manually edit and
add the subtrees to the generated tree. For simplicity of the
algorithm, however, both Parallel Selector Action nodes and
Last Action Taken Sequences are described as being attached
to the root of the main tree.

Inverter Nodes: BTs generated from the BT-Espresso
algorithm cannot reveal inversely related behaviors due to the
algorithm’s inability to generate Inverter nodes. This limits
the breadth of possible behaviors that can be constructed, and
thus the expressivity of the generated BTs is reduced. The
RE:BT-Espresso algorithm accommodates Inverter nodes by
identifying inversely related conditional statements in the DT
Boolean expressions, and representing one as the inverse
of the other (Alg. 1, lines 3, 17-19). For example, if both
condition C1 = (dist < 0.5) and C2 = (dist ≥ 0.5)
are present in a DT Boolean expression, RE:BT-Espresso



Algorithm 2: GEN_LAT_TREES. Generate behavior trees given
an input rules, a list of Boolean expressions that represent the
conditions for an action to be triggered. Repeater generates an LAT
tree, replacing the Sequence node with a Repeater node. Algorithm
notation consistent with notation used in [6].

Input: rules - list of Boolean expressions
Output: list of behavior trees

1: function GEN_LAT_TREES(rules)
2: G ← GENERATE_GRAPH(rules)
3: G, cycles_d ← REMOVE_CYCLES(G)
4: for path in G.paths do
5: SN ← Sequence node
6: for n in path do
7: if is_cycle_node(n): then
8: SN.add_child(Repeater(n, cycles_d))
9: continue

10: end if
11: if first_node(n) then
12: rule ← GET_DNF_RULE(n.action)
13: else
14: rule ← GET_LAT_CONJUNCT(n.action)
15: rule ← rule \ lat_rules
16: end if
17: for seq_rule in rule do
18: SN.add_child(Condition(seq_rule))
19: end for
20: SN.add_child(Action(n.action))
21: end for
22: return_list.append(SN)
23: end for
24: return return_list
25: end function

algorithm will detect the inverse relation, and represent C2

as ¬C1 via an Inverter node with the C1 Condition node as
the child (Fig. 1). When building the BT, all notted conditions
are detected and given an Inverter node above the original
Condition node.

Parallel Selector Actions: The leaf nodes of the learned
DT have a class distribution which represents the number
of examples for each action from the action space for the
given decision path. BT-Espresso chooses the most probable
action when constructing a corresponding DNF logical state-
ment, even for high impurity leaf nodes. RE:BT-Espresso
extends this by finding all actions in the DT leaf nodes
that are δ-close to the most probable action according to
a configurable fraction threshold δ. For a DT leaf node
with class distribution A = {a0, a1, ..., an}, all actions
ai ≥ (1−δ) ·max(A) are treated as a singular action during
the Berkeley minimization, then separated again and placed
under a “Parallel/Selector” node when the BT is constructed
(Alg. 1, line 2). The suggested “Parallel/Selector” node is
the root of a SAES, and allows the node to be changed to
either a Parallel or Selector node at runtime via a visual
editor, depending on what the user sees fit. This increases the
expressivity of the BT, since a greater breadth of behaviors
can be generated. Specifically, the end user can now choose
which actions to include in the BT for a DT decision path
that ended in a high impurity leaf node.

Last Action Taken Sequences: Task-level robot policies
often execute many actions sequentially, regardless of the

state space during the sequence. Since the BT-Espresso
algorithm trains the DT solely on the world state space
without considering patterns in the action being triggered,
it cannot detect and generate sequences of actions found in
the demonstration data. Since sequences of actions cannot
be captured and constructed by the algorithm, the resulting
BTs have limited expressivity.

The RE:BT-Espresso implements Last Action Taken Se-
quences, a SAES that captures common sequences of actions
from the demonstration data. A last action taken (LAT)
column is first added to the data for each action at which
reflects the most recent action at0 such that t0 < t and
at0 ̸= at. This column is captured within the DT rules.
As illustrated in Fig. 2, after the Berkeley minimization,
conjunctions containing a LAT condition are found. A graph
G is constructed with directed edges constructed from LAT
action to action. The graph represents the action sequences
learned from the demonstration data, where each node is an
action, and the adjacent nodes of incoming edges represent
last taken actions.

If G is a directed acyclical graph (DAG), a Sequence node
SN is constructed for all paths from source nodes to sink
nodes. For every path of the DAG, RE:BT-Espresso traverses
the nodes. For every Action node, the Boolean expression
is retrieved, and all conditions within the conjunction that
contains the LAT condition are added to SN , not including
the LAT condition itself. Finally, the Action node is added
to SN (see Alg. 2 and Fig. 2).

Last Action Taken Repeaters: Cycles within G are
turned into Repeater nodes when G is not a DAG. Repeater
nodes act as Sequences nodes that loops the sequence con-
tinually until a failure. All cycles are found within G and
eventually output as Repeater nodes as shown in Fig. 3.

First, all cycles in G are found. For all cycles, a node must
be chosen from the cycle as the start of the path. There are
two proposed strategies for determining the starting node.
The first is to choose an arbitrary node. The second searches
the original demonstration data for the various combinations

Fig. 2: Creating Last Action Taken (LAT) Sequence trees as
described in Alg. 2. 1) Rule look up from action to conditions. 2)
The LAT graph with edges [LAT action, action]. 3) The resulting
LAT subtree with conditions. All conjunctions of A1 are included.
For A0 and A2, only the LAT conjunction is considered with LAT
literals removed as the sequence guarantees the last action. Note
C2 must be checked again before A0 as C2 may change after
completing A1. This subtree is later added to the root node.



Fig. 3: Creating Last Action Taken (LAT) Repeater trees as de-
scribed in Alg. 2 using a turn-go-turn mobile robot policy example.
1) The original LAT graph with edges [LAT action, action]. 2)
The result of replacing cycles with cycle nodes. The original cycle
paths are stored in a lookup for Repeater subtrees. 3) The resulting
subtrees with respect to all paths within the cycle graph following
the LAT Sequence builder as shown in Fig. 2. All subtrees are
added to the root node. Condition nodes omitted for brevity.

of possible cycle sequences and chooses the starting node
to be the starting node of the most frequent sequence. The
cycle path starting at this node follows the same steps as
constructing LAT Sequences above. The parent SN is then
replaced with a Repeater node RN . The linked code in Sec.
IV implements the first strategy.

Last Action Taken Sequences + Repeaters: To further
capture more complex and expressive trees, LAT Repeaters
and LAT Sequences are combined when G contains cycles.
The following constitutes a single pass for the LAT Repeater
subroutine. For graph G, all cycles are found and replaced
with a cycle node CN as described in the above section.
All nodes within the cycle are removed. Every edge going
in or out of each node of the cycle are added to CN . CN is
put into a lookup table from cycle node to Repeater subtree
for the original cycle path. When nodes are part of multiple
cycles, a single cycle can either be arbitrarily chosen for this
pass on G or scored using a metric such as the most frequent
cycle found within the original demonstration data.

A single pass does not guarantee a DAG for G if nodes are
part of multiple cycles. A single pass, however, can lead to
more paths as cycles are removed. A DAG can be guaranteed
if this subroutine is repeated on the resultant graph G′ until
all cycles are removed. When all cycles are removed, the
original LAT Sequence algorithm is run on the final resultant
graph. When encountering a cycle node, the subtree within
the cycle node look up is used with a Repeater parent node
as opposed to a Sequence node parent (see Alg. 2 and Fig.
3). The linked code in Sec. IV runs the subroutine until all
cycles have been removed.

IV. EXPERIMENT AND RESULTS

A. System Overview

The RE:BT-Espresso algorithm is implemented
in Python3 [20], tested, and available at

https://github.com/interaction-lab/
RE-BT-Espresso. The repository contains a BT
simulator, BT builder pipeline, and experiment analysis.

The data simulator is designed as an agent-based mod-
elling system [21]. The simulator creates BTs using
py_trees [22] and simulates actions with response to
environment variables. At each time step t, the simulator first
updates environment variables to random values [0.0, 1.0].
The BT then performs a single tick. All actions taken, the
action return value (i.e., Success or Failure), and environment
variables are logged to a csv for t. All node types that RE:BT-
Espresso can generate (e.g., Repeater nodes, Inverter nodes,
Parallel Selector Action nodes) are supported. Actions and
conditions further support configurable success and failure
probabilities. To simulate parallel actions that happen over
multiple time steps, actions have a configurable chance to
return Running in which case no action is logged until a
Success or Failuire is returned.

The BT builder pipeline accepts timeseries data contain-
ing actions as labels with a configuration file and outputs
a set of BTs. These data are used to train DTs using
scikit-learn’s [23] DecisionTreeClassifier
using Gini Impurity as the measure of split quality. Multiple
DTs are learned for all pruning values generated from
minimal cost-complexity pruning [18]. Finally, the pipeline
converts these DTs to BTs using RE:BT-Espresso and gen-
erates a folder of BTs, one for every level of pruning on
the DT. The UC Berkeley Espresso logic minimization [19]
within the pipeline is implemented via pyeda[24].

Experiment analysis consisted of comparing generated
BTs (BTgen) to the original simulated BT (BTsim) by
graph analysis using networkx [25]. For all levels of
pruning BTs, each subtree of BTgen is compared against
BTsim. Graph edit distance (GED) [26] is reported for
graph similarity calculated using networkx’s heuristic
optimize_graph_edit_distance for configurable
number of iterations as exact GED is NP-Hard. A lower
graph edit distance indicates a more similar graph. A custom
node comparator is provided to equate nodes of the same
type. The subtree with the lowest GED is reported.

B. Experiments

Subtrees were randomly auto-generated according to valid
BT rules and simulated. These subtrees were combined in
sets of 2 or 3 with a randomly chosen Parallel or Sequence
root to form unique BT configuration files. The simulator was
configured with the following: total number of time steps
= 20,000; return Running chance = 40%. The BT builder
pipeline was configured with the following: Parallel Selector
Action node threshold δ = 0.3; max DT depth = 5; SVM-
SMOTE Upsampling = False. Both RE:BT-Espresso and
BT-Espresso were run to generate BTs to be compared in
result analysis. Result analysis was configured to run the
GED heuristic from networkx for 1 iteration.

For every subtree of the original simulated tree, every sub-
tree of the generated tree from BT-Espresso was scored using
GED choosing the lowest score among all generated subtrees.



The same was repeated for RE:BT-Espresso. Minimum and
median were then calculated for each subtree. For example,
a simulated tree with 2 subtrees and 20 pruning levels of
DT resulted in 40 BT-Espresso GED scores and 40 RE:BT-
Espresso GED scores. The cumulative statistics were taken
from each subtree, leading to two scores for each statistic in
this example (2 scores for each subtree for each algorithm).

The reduction of BT size was also used as a metric
for interpretability. The simulated trees were rerun with
a modified configuration that removed all SAES (Paral-
lel Selector Actions, LAT Sequences, and Repeaters) from
RE:BT-Espresso output to isolate the float representation
reduction and factor out Condition nodes. The resultant trees
were compared on the number of total nodes generated by
each algorithm. The relative percent of nodes removed was
calculated for all generated trees using the following metric:
num_nodes(BTE)−num_nodes(RE:BTE)

num_nodes(BTE) ∗ 100%

C. Results

Of the original 100 configuration files, 98 experiments
completed with a total of 234 simulated subtrees. Two con-
figuration files timed out for GED calculations (2 weeks of
running the experiments) and were therefore not included in
the results. The results for differences in GED can be found
in Fig. 4. Of the 234 trees, RE:BT-Espresso’s minimum score
outscored BT-Espresso’s minimum score on 54 subtrees,
tied on 178, and lost on 2. RE:BT-Espresso’s median score
outscored BT-Espresso’s median score on 52 subtrees, tied
on 179, and lost on 3.

To measure the relative success of Repeater and Par-
allel Selector Action nodes, simulated subtrees containing
a Repeater node or a number of Parallel Selector Action
nodes were compared to RE:BT-Espresso’s corresponding
minimum scoring subtree. A total of 106 subtrees contained
a Repeater node when generated by RE:BT-Espresso from
the 125 simulated subtrees originally containing a Repeater
node. A total of 65 of the 95 subtress contained exactly the
same number of Parallel Selector Action nodes (simulated
subtrees contained 0, 1, or 2 Parallel Selector Action nodes).

Fig. 4: Results of Graph Edit Distance (GED) [26] differences
in minimum and median scores of BT-Espresso (GEDBTE) and
RE:BT-Espresso (GEDRE:BTE) for all subtrees. See Sec. IV for
details on scoring. Zero score differences (Min : 178, Median : 179)
are removed for clarity.

Fig. 5: Percent of reduction when applying float representation re-
duction and factoring out Condition nodes (Sec. III-B). The percent
reduction is calculated as num_nodes(BTE)−num_nodes(RE:BTE)

num_nodes(BTE)
∗

100% for all generated trees (2250 total). Median reduction: 7.82%
fewer nodes; max reduction: 31.25% fewer nodes; and number of
no difference found: 601.

.

The RE:BT-Espresso algorithm percent tree reduction
from adding float representation reduction and factoring out
Condition nodes is found in Fig. 5. Of the total 2250 created
trees, 1649 trees (≈ 73.29%) were reduced with a median
reduction of 7.82% and a maximum reduction of 31.25%.

V. DISCUSSION

RE:BT-Espresso consistently and successfully regenerated
trees that were more similar to the original simulated trees
than BT-Espresso.

To the best of our knowledge, there is no known quantita-
tive metric for evaluating BTs learned from robot demonstra-
tion data. DT intermediary approaches are typically validated
by learning a BT from demonstration for a single high
level task with task completion indicating a quality policy
[5], [6]. Reinforcement Learning and Genetic Programming
approaches are usually validated with their respective simu-
lation and reward scoring to benchmark the simulated task
[13], [14], [15]. The DT intermediary approaches do not
have simulation, as the goal is to use real-world data to
learn the policy; those data are expensive to collect, both in
needed time and resources. We combined these approaches
by simulating an exact BT for the demonstration data and
comparing it to the algorithmically generated BT based
on their respective graph edit distances. While imperfect,
this approach provides a quantitative metric for evaluating
differences between generated BTs.

End user non-expert programming of robot control policies
is the ultimate goal of learning control policies from robot
demonstrations. The RE:BT-Espresso pipeline outputs a BT
of suggested subtrees that can be chosen from by the end
user. The proposed optimal approach to choosing BTs is
described in Sec. IV. The described tree coloring is designed
to help users to be able to better understand common sub-
structures of the interaction. These design choices, however,
have yet to be explored with users. Future work will validate
the usability of RE:BT-Espresso-generated BTs through a
user study.



REFERENCES

[1] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards a
unified behavior trees framework for robot control,” in 2014 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 5420–
5427, IEEE, 2014.

[2] F. W. Heckel, G. M. Youngblood, and N. S. Ketkar, “Representational
complexity of reactive agents,” in Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games, pp. 257–264,
IEEE, 2010.

[3] Y. Zhang, P. Tiňo, A. Leonardis, and K. Tang, “A survey on neural
network interpretability,” IEEE Transactions on Emerging Topics in
Computational Intelligence, 2021.

[4] M. Iovino, E. Scukins, J. Styrud, P. Ögren, and C. Smith, “A survey of
behavior trees in robotics and ai,” arXiv preprint arXiv:2005.05842,
2020.

[5] I. Sagredo-Olivenza, P. P. Gómez-Martín, M. A. Gómez-Martín, and
P. A. González-Calero, “Trained behavior trees: Programming by
demonstration to support ai game designers,” IEEE Transactions on
Games, vol. 11, no. 1, pp. 5–14, 2017.

[6] K. French, S. Wu, T. Pan, Z. Zhou, and O. C. Jenkins, “Learning
behavior trees from demonstration,” in 2019 International Conference
on Robotics and Automation (ICRA), pp. 7791–7797, IEEE, 2019.

[7] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Def-
initions, methods, and applications in interpretable machine learning,”
Proceedings of the National Academy of Sciences, vol. 116, no. 44,
pp. 22071–22080, 2019.

[8] O. Biggar, M. Zamani, and I. Shames, “An expressiveness hierarchy
of behavior trees and related architectures,” IEEE Robotics and Au-
tomation Letters, vol. 6, no. 3, pp. 5397–5404, 2021.

[9] G. Robertson and I. Watson, “A review of real-time strategy game ai,”
Ai Magazine, vol. 35, no. 4, pp. 75–104, 2014.

[10] D. Isla, “Gdc 2005 proceeding: Handling complexity in the halo 2 ai,”
Retrieved October, vol. 21, p. 2009, 2005.

[11] M. Matarić and F. Michaud, Behavior-Based Systems, pp. 891–909.
01 2008.

[12] M. Colledanchise and P. Ögren, “Behavior trees in robotics and ai,”
Jul 2018.

[13] B. Banerjee, “Autonomous acquisition of behavior trees for robot
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3460–3467, IEEE, 2018.

[14] L. Li, L. Wang, Y. Li, and J. Sheng, “Mixed deep reinforcement
learning-behavior tree for intelligent agents design.,” in ICAART (1),
pp. 113–124, 2021.

[15] Q. Zhang, J. Yao, Q. Yin, and Y. Zha, “Learning behavior trees
for autonomous agents with hybrid constraints evolution,” Applied
Sciences, vol. 8, no. 7, p. 1077, 2018.

[16] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[17] M. Colledanchise and P. Ögren, “How behavior trees modularize hy-
brid control systems and generalize sequential behavior compositions,
the subsumption architecture, and decision trees,” IEEE Transactions
on robotics, vol. 33, no. 2, pp. 372–389, 2016.

[18] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classifi-
cation and regression trees. Routledge, 2017.

[19] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic minimization algorithms for VLSI synthesis, vol. 2.
Springer Science & Business Media, 1984.

[20] Python Core Team, Python: A dynamic, open source programming
language. Python Software Foundation, 2019. Python version 3.7.

[21] C. M. Macal, “Everything you need to know about agent-based
modelling and simulation,” Journal of Simulation, vol. 10, no. 2,
pp. 144–156, 2016.

[22] Py Trees. 2021.
[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[24] C. Drake, “Pyeda: data structures and algorithms for electronic design
automation,” in Proc. 14th Python in science conference (SciPy),
pp. 26–31, 2015.

[25] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure,
dynamics, and function using networkx,” tech. rep., Los Alamos
National Lab.(LANL), Los Alamos, NM (United States), 2008.

[26] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An
exact graph edit distance algorithm for solving pattern recognition
problems,” in 4th International Conference on Pattern Recognition
Applications and Methods 2015, 2015.


