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Abstract. Personalizing interactions in socially assistive robot (SAR)
tutoring has shown promise with a wide variety of learners, especially
when using multiple interaction modalities. Many of those interactions,
however, focus on seated learning contexts, creating a need for multi-
modal personalization measures in kinesthetic (i.e., embodied) learning
contexts. This paper proposes a multimodal measure of student kines-
thetic curiosity (KCS) that combines a student’s movement and cu-
riosity measures into a single, personalized measure. This work evaluates
the efficacy of KCS in a SAR tutor interaction by conducting a within-
subjects (n = 9) pilot study where participants completed kinesthetic
mixed reality coding exercises alongside a curious robot tutor whose ac-
tions were determined by KCS . The study results indicate that the sta-
tionarity assumptions needed for KCS were met and that the robot tutor
was able to successfully use KCS to personalize its action policy, thereby
positively affecting short term KCS . However, no significant results were
found for longer state changes for each student. The mixed reality visual
programming language (MoveToCode) created for this work has been
made open-source. This work aims to inform future online features and
measures for mixed reality human-robot interactions.
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1 Motivation, Problem Statement, Related Work

A recent surveys of Socially Assistive Robot (SAR) tutors reports that SAR
tutoring has shown great promise with various learners, especially when using
multiple interaction modalities, but largely consists of one-on-one learning com-
panions for children with an emphasis on personalizing the learning interaction
[2]. This is often characterized by Bloom’s two sigma problem [1] where students
performed two standard deviations better when tutored one-on-one compared to
traditional one-to-many lecture contexts. To personalize toward individual stu-
dent needs, SAR tutor interactions have adopted interfaces (e.g., tablets) that
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increase the observability of student actions. The data from those interfaces are
used to pursue multimodal reasoning about hidden student state such as a stu-
dent’s knowledge [11], affect [12], or engagement levels [6]. The emphasis on
seated learning interactions creates a need to explore kinesthetic learning con-
texts (i.e., embodied learning [8]) that include the well-documented benefits of
the physical embodiment of the SAR tutor [3].

Embodied learning can be effectively explored in virtual, augmented, and
mixed reality human-robot interaction (VAM-HRI) settings. Consequently, this
area of research has grown in recent years [15], focusing on design [14], teleop-
eration [7], and signalling challenges [13] [5]. Many of the studied interactions
employ augmented reality head-mounted displays (ARHMD) that generate rich
multimodal data minimizing or removing the need for external sensing.

This work explores using such rich, multimodal data for personalizing stu-
dent interactions in an embodied learning context. We create synergies between
SAR tutors, VAM-HRI, and embodied learning through the design and imple-
mentation of MoveToCode (Fig. 1), an open-source, mixed reality programming
platform that interfaces with a robot tutor [4]. We introduce a real-time, multi-
modal measure of student kinesthetic curiosity (KCS) and analyze how a
curious robot tutor’s actions impact KCS during an interaction.

Fig. 1: MoveToCode Interaction; participants attempted to solve coding exercises
involving 3D code blocks alongside the robot tutor, Kuri

2 Technical Approach

The key insight of this work is to combine the components of embodied learning
(e.g., movement) and student curiosity (e.g., seeking new information) into a sin-
gle measure of kinesthetic curiosity (KCS) that is personalized for each student.
To better understand how the design of KCS can be leveraged for learning ex-
periences with a robot, we designed a robot action policy that uses KCSt . With



Kinesthetic Curiosity 3

the hypotheses given in Sect. 2.3, participants completed mixed reality coding
exercises with a curious SAR tutor described further in Sect. 4.

2.1 Measuring and Personalizing Kinesthetic Curiosity

To inform a robot’s action policy, our real-time measures used a sliding-window
approach to measure KCSt , a student’s kinesthetic curiosity at a given time:

movementSt =

t∑
n=t−tw+1

dist(head_posen, head_posen−1) (1)

curiositySt =

t∑
n=t−tw

[ISASn 6= NULL] (2)

KCSt = w0 ∗
movementSt −movementS

σmovementS
+ w1 ∗

curiositySt − curiosityS
σcuriosityS

(3)

where movementSt (1) is measured with accumulated head pose change over a
sliding time window tw, and curiositySt (2) is measured as the sum of information
seeking actions (ISAs) over tw. ISAs are defined relative to the domain and
action space of the learner. Specifically for this work, ISAs included snapping
code blocks (Fig. 2), unsnapping code blocks, pressing interaction menu buttons
(Fig. 1), and creating new code blocks.KCSt (3) assumes an underlying Gaussian
distribution for movementS and curiosityS for all instances of time from 0 to t.
This measure is a weighted combination ofmovementSt deviation and curiositySt
deviation from their respective mean (i.e., z-normalization [9]). The resulting
normalized scores are therefore personalized to each student at time t.

Fig. 2: Available MoveToCode code blocks (left) as seen by the participant
through the Hololens 2. Code block manipulation (right) with a participant
grabbing the block and letting it go to snap code blocks together.
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For post-interaction analysis, a student’s KCS and a robot’s KCR values for
an entire interaction consisted of the following:

KCS = (movementS , curiosityS) (4)

KCR = (movementR, curiosityR) (5)

where movementS is the student’s total movement throughout the interaction,
and curiosityS is the total number of ISAs throughout the interaction, allowing
for normalization across interactions of varying lengths. Using the same set of
actions to measure KCS , a robot tutor’s KCR can be evaluated for both the
real-time measure KCRt and the post-interaction analysis of KCR.

2.2 KC Robot Tutor Action Policy

The robot’s adjustable rule-based policy, shown in Table 1, was designed using
a changeable threshold TKC and time-window tw that triggered robot actions
based on the time since last action tslaR. For example, a lower TKC causes the
robot to take more information-seeking actions in order to motivate the user to
do the same. The rule-based policy was designed to support a data collection for
informing future data-driven policies.

Table 1: Robot Action Policy
Action Activation State

Exercise Goal Dialogue New exercise start
Virtual ISA KCS

t < TKC and tslaR ≥ tw
Positive Physical Affect KCS

t ≥ TKC and tslaR ≥ tw or Dialogue
Congratulatory Dialogue Correct Answer
Scaffolding Dialogue Incorrect Answer and Scaffolding Dialogue Left
Encouraging Dialogue Incorrect Answer and ¬Scaffolding Dialogue Left

2.3 User Study Hypotheses

We performed a user study (described in Sect. 4) to evaluate the following hy-
potheses regarding KCS with equal weights (w0 = w1 = 0.5):

H1: KCS data fulfill the stationarity assumption needed for z-normalization.
H2: Robot virtual information seeking actions (i.e., curious actions) will posi-
tively affect student KCSt .
H3: A more curios robot (i.e., lower TKC) will encourage a higher KCS when
compared to a less curious robot (i.e., higher TKC).

For H1, KCSt assumes an underlying Gaussian distribution over the time se-
ries which implies that the time series data are stationary. For H2, we examined
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if robot virtual information seeking action (i.e., curious actions) could positively
affect KCSt to better inform future robot action selection policies. For H3, we
tested the differences in conditions to examine longer interaction effects of a
more or less curious robot.

3 Results

KCSt depends on the time series for movementSt and curiositySt to be station-
ary as they are modeled with the underlying assumption of a constant mean
and variance needed for z-normalization. We performed an Augmented Dickey-
Fuller test on each participants’ movementSt and curiositySt measures over the
interaction to test for stationarity. With the exceptions of movementP1

t (p =
.017, DFτ = −3.248) and curiosityP2

t (p = .012, DFτ = −3.378), all tests re-
ported a significance of p < .01, supporting H1.

To analyze the effect of robot virtual information seeking actions (ISAs),
we calculated the difference of measure (M) from time t to time t + tw
(∆Mt,t+tw) for all robot ISAs at time t. The robot totaled 170 ISAs with
∆Mt,t+tw distributions tested for normality (Fig. 3). A two-sided, single
sample t-test was performed against a mean of 0. Significant results were
found for all measures: ∆movementSt,t+tw(m) (t = 4.51, p < .001, x̄ =

0.495, d = 0.35); ∆curiositySt,t+tw(ISA) (t = 4.637, p < .001, x̄ = 0.776, d =

0.36); ∆z
(
movementSt,t+tw

)
(t = 4.623, p < .001, x̄ = 0.477, d = 0.36);

∆z
(
curiositySt,t+tw

)
(t = 5.087, p < .001, x̄ = 0.452, d = 0.39); ∆KCSt,t+tw

(t = 6.764, p < .001, x̄ = 0.464, d = 0.52). These findings demonstrate a pos-
itive short term effect of robot virtual ISAs on KCSt , supporting H2.

Fig. 3: Action distributions for all differences in measures where the robot took
an ISA at time t to the score at time t+ tw (∆Mt,t+tw). Zero line is plotted to
show distribution shifts.
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We analyzed differences in total movementS and curiosityS,R measures be-
tween the robot action policy threshold conditions of TKChigh = 0.5 and TKClow =
−0.5 shown in Fig. 4. A Wilcoxon signed-rank test indicated a significant effect
for curiosityR(ISA) (x̃high = 15, x̃low = 3,W = 0, p = .008). No significant
effect was found for movementS(m) (x̃high = 52.2, x̃low = 39.93,W = 21, p =
.859) or curiosityS(ISA) (x̃high = 90, x̃low = 130,W = 11, p = .172). These
findings support the TKC thresholds chosen but do not support a difference in
KCS between conditions posited by H3.

Fig. 4: Measures between the more curious (TKC = −0.5) and less curious
(TKC = 0.5) robot conditions. The left depicts the total score for each measure
for all participants. The right depicts normalized measures for each participant
between conditions.

4 Completed Experiment

A single-session within-subjects experiment was conducted with approval by our
university IRB (UP-17-00226) to evaluate a curious robot tutor policy (Table 1)
with differing thresholds (TKC). Ten participants (3F,7M) were recruited from
the University of Southern California student population, with an age range of
19-27 (x̄ = 22.8, σ = 2.9). P8 experienced two separate operating system crashes
(at 285.92 s and 341.44 s); having not experienced both experimental conditions,
P8 was therefore removed from the behavioral data analysis.

Participants wore the ARHMD (Microsoft Hololens 2) and attempted to com-
plete programming exercises with the help of a robot tutor, a Mayfield Robotics
Kuri (Fig. 1). Kuri used the action policy described in Table 1 with tw empir-
ically set to 20 seconds. The independent variable in the study was the robot
KC threshold level using TKChigh = 0.5 and TKClow = −0.5. The experiment lasted
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20 minutes with TKC substituted at 10 minutes. ISAs (see Eq. 2) in this exper-
iment included snapping code blocks, unsnapping code blocks, pressing interac-
tion menu buttons, and creating new code blocks.

5 Main Experiment Insights

This work developed a multimodal measure of kinesthetic curiosity (KC) and
conducted and evaluated it in a pilot study. The study validated the efficacy
of using multimodal data from an ARHMD to personalize student interactions
via kinesthetic curiosity. MoveToCode, the programming language developed for
this work, has been made fully open-source [4] and is extensible to any robot
supporting the Robot Operating System (ROS) [10].

The study results demonstrate that z-normalization across modalities shows
promise for providing a unitless comparison across measure modalities. Given
time-synchronized data from the ARHMD, there is a significant benefit to fur-
ther exploring additional interaction modalities the headsets contain, such as
articulated hand tracking and eye gaze tracking. The logging system developed
as part of MoveToCode has allowed multiple followup projects to use the col-
lected behavioral data from this experiment with minimal processing, as each
modality is logged at the same rate of 50Hz.

Our results indicate short-term effects of robot actions, but full interaction
effects were not found across conditions. Based on the high post-interaction
interview reports of novelty (7/10) within the interaction (e.g., users referring
to the interaction as “cool”), future work will explore longer-term interactions
with students. This work demonstrates that KCSt lends itself to reinforcement
learning approaches for long-term personalization being explored in the rare
long-term SAR tutoring interactions [2]. We plan to expand the virtual action
space of the robot tutor and eventually study long-term personalization in school
and home settings.
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