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Abstract—Expressivity–the use of multiple modalities to convey
internal state and intent of a robot–is critical for interaction. Yet,
due to cost, safety, and other constraints, many robots lack high
degrees of physical expressivity. This paper explores using mixed
reality to enhance a robot with limited expressivity by adding
virtual arms that extend the robot’s expressiveness. The arms,
capable of a range of non-physically-constrained gestures, were
evaluated in a between-subject study (n = 34) where participants
engaged in a mixed reality mathematics task with a socially
assistive robot. The study results indicate that the virtual arms
added a higher degree of perceived emotion, helpfulness, and
physical presence to the robot. Users who reported a higher
perceived physical presence also found the robot to have a higher
degree of social presence, ease of use, usefulness, and had a
positive attitude toward using the robot with mixed reality. The
results also demonstrate the users’ ability to distinguish the
virtual gestures’ valence and intent.

I. INTRODUCTION

Socially assistive robots (SAR) have been shown to have
positive impacts in a variety of domains, from stroke reha-
bilitation [1] to tutoring [2]. Such robots, however, typically
have low-expressivity due to many physical, cost, and safety
constraints. Expressivity in Human-Robot Interaction (HRI)
refers to the robot’s ability to use its modalities to non-
verbally communicate the robot’s intentions or its internal
state [3]. Higher levels of expressiveness have been shown
to increase trust, disclosure, and companionship with a robot
[4]. Expressivity can be conveyed with dynamic actuators (e.g.,
motors) as well as static ones (e.g., screens, LEDs) [5]. HRI
research into gesture has explored head and arm gestures, but
many nonhumanoid robots partially or completely lack those
features, resulting in low social expressivity [6].

Social expressivity refers to expressions related to commu-
nication of affect or emotion. In social and socially assistive
robotics, social expressivity has been used for interactions such
as expressing the robots emotional state through human-like
facial expressions [7], [8], [9], gestures [6], and physical robot
poses [10]. In contrast, functional expressivity refers to the
robot’s ability to communicate its functional capabilities (e.g.,
using turn signals to show driving direction). Research into
robot expressiveness has explored insights from animation,
design, and cognitive psychology [3].

The importance of expressivity and the mechanical, cost,
and safety constraints of physical robots call for exploring
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Fig. 1: This work explores how mixed reality robot extensions
can enhance low-expressivity robots by adding social gestures.
Six mixed reality gestures were developed: (A) facepalm, (B)
cheer, (C) shoulder shrug, (D) arm cross, (E) clap, and (F)
wave dance.

new modalities of expression, such as through the use of
augmented reality (AR) and mixed reality (MR). AR refers to
the ability to project virtual objects onto the real world without
adherence to physical reality, while MR refers to virtual objects
projected onto the real world while respecting physical reality
and reacting to it.

Using virtual modalities for robots has led to the emerging
field of Augmented Reality Human-Robot Interaction (AR-
HRI), which encompasses AR, MR, and virtual reality (VR)
robotics. AR-HRI has already had advances in the functional
expression of a robot [11], [12] but has not yet explored
social expressiveness. Introducing such expressiveness into
AR-HRI allows us to leverage the positive aspects of physical
robots–embodiment and physical affordances [13]–as well as
the positive aspects of mixed reality–overcoming cost, safety,
and physical constraints. This works aims to synergize the
combined benefits of the two fields by creating mixed reality,
socially expressive arms for low social expressivity robots (Fig.
1).

This paper describes the design, implementation, and val-
idation of MR arms for a low-expressivity physical robot.
We performed a user study where participants completed a
mixed reality mathematics task with a robot. This new and
exploratory work in AR-HRI did not test specific hypotheses;
empirical data were collected and analyzed to inform future
work. The results demonstrate a higher degree of perceived
robot emotion, helpfulness, and physical presence by users
who experienced the mixed reality arms on the robot compared
to those who did not. Participants who reported a higher
physical presence also reported higher measures of robot social



presence, perceived ease of use, usefulness, and had a more
positive attitude toward using the robot with mixed reality. The
results from the study also demonstrate consistent ratings of
gesture valence and identification of gesture intent.

II. BACKGROUND AND RELATED WORK

A. Augmented Reality Human-Robot Interaction

AR and MR can be delivered through projectors [14],
tablets [15], and head-mounted displays [11]. Projectors allow
for hands-free communication, but are limited with respect
to user input. In contrast, tablets allow for direct, intuitive,
and consistent user input, but restrict users to a 2D screen,
eliminating hands-free, kinesthetic interactions. An augmented
reality head-mounted display (ARHMD) aims to remove those
limitations by allowing consistent, direct input and hands-free
interaction. ARHMDs, such as the Microsoft Hololens, allow
for high quality, high fidelity, hands-free interaction.

The reality-virtuality continuum spans the range of tech-
nologies from physical reality, to differing forms of mixed
reality, to full virtual reality [16]. Exploring that continuum for
enhancing robot communication is a nascent area of research;
Augmented Reality Human-Robot Interaction (AR-HRI) has
been gaining attention [12].

Creating mixed reality experiences with robots is now
possible with open-source tools [17]. Work to date has largely
focused on signalling functional intent [11], [12] and teleoper-
ation [18], [19], [20]. For example, functional signalling used
in Walker et al. [11] allowed nonexpert users to understand
where a robot was going in the real world, which was
especially useful for robots with limited expressive modalities.

The use of AR for HRI, however, is a very new area of
research [21]. Specifically, research into AR-HRI’s to date has
focused on functional expression, with little work on social
expression. Survey analysis across the Miligram virtuality
continuum has shown early work in social mixed reality for
robots to be limited [22]. Examples include adding a virtual
expressive face to a Roomba vacum cleaning robot [23] and
adding a virtual avatar on a TurtleBot mobile robot [24].
To the best of our knowledge, the virtual overlays have not
been pursued further since the survey was conducted in 2009,
leaving opportunities open for exploring socially expressive
AR-HRI design.

B. Social Expressivity and Presence in HRI

Research in HRI has explored robot expressiveness ex-
tensively, including simulating human facial expressions on
robots [7], [8], [9], gestures [6], and physical social robot
poses [10]. Increased social expressivity has been shown to
build rapport and trust [4].

For socially interactive robots, social presence depends on
the ability to communicate expected social behaviors through
the robot’s available modalities [6], [25]. A high degree of
social presence can be beneficial to user sympathy and inti-
macy [26]. This effect has been validated in various domains,
including museum robots [27] and robot math tutors [2].
Since physical robots are limited by cost, physical safety,

Fig. 2: Keyframes for Kuri’s clapping animation.

and mechanical constraints, socially interactive robots often
explore additional communication channels, ranging from
lights [28] to dialogue systems [29]. The work presented
here also explores an additional communication channel, by
taking advantage of the high fidelity of MR and the lack
of physical constraints to evaluate the effectiveness of mixed
reality gestures on increasing social expressiveness.

III. ROBOT GESTURE DESIGN AND IMPLEMENTATION

To study MR arms, we chose a mobile robot with very low
expressivieness: the Mayfield Robotics Kuri (Fig. 2), formerly
a commercial product. Kuri is 50 cm tall, has 8 DoF (3 in
the base, 3 between the base and head, and 1 in each of the
two eyelids), and is equipped with an array of 4 microphones,
dual speakers, lidar, chest light, and a camera behind the left
eye. While very well engineered, Kuri is an ideal platform for
the exploration of AR-HRI in general, and MR gestures in
particular, because of its lack of arms.

A. Implementation

We used the Microsoft Hololens ARHMD, which is
equipped with a 30◦ x 17.5◦ field of view (FOV), an
IMU, a long-range depth sensor, an HD video camera,
four microphones, and an ambient light sensor. We devel-
oped the mixed reality extension prototypes in Unity3D,
a popular game engine. For communication between Kuri
and the Hololens, we used the open source ROS# library
[17]. The full arm and experiment implementation is open-
source and available at https://github.com/interaction-lab/
KuriAugmentedRealityArmsPublic.

We developed a balanced set of positive gestures (a dancing
cheer, a clap, and a wave-like dance) and negative gestures (a
facepalm, a shoulder shrug, and crossing the arms), as shown
in Fig. 1. We used the Unity built-in interpolated keyframe
animator to develop each gesture animation and a simple
inverse kinematic solver to speed up the development of each
keyframe.

B. Gesture Design

In designing the virtual gestures for the robot, we took
inspiration from social constructs of collaboration, such as
pointing to indicate desire [30], and emblems and metaphoric
gestures [31], such clapping to show approval. The inclusion
of such gestures goes beyond the current use of mostly audio



and dance feedback in many socially assistive robot systems
[32], [2], [33].

Work in HRI has explored Disney animation principles [34],
typically either in simulation or with physically constrained
robots [35], [36], [37]. In this work, we explored a subset
of Disney principles–squash and stretch, exaggeration, and
staging–in the context of MR arm gestures. Each principle
was considered for its benefit over physical world constraints.
Squash and stretch gives flexibility and life to animations
bringing life to robots that are rigid. Exaggeration has been
shown to aid robot social communication [36]. Staging was
considered for its role in referencing objects using arms to
allow for joint attention.

Informed by feedback from a pilot study we conducted,
the animated gestures were accompanied by physical body
expressions to make the arms appear integrated with Kuri.
For positive gestures, Kuri performed a built-in happy gesture
(named “gotit”) that involved the robot’s head moving up
and emitting a happy, rising tone. For negative gestures, Kuri
performed a built-in sad gesture (named “sad”) that involved
the robot’s head moving down and being silent.

We also explored the use of deictic (i.e., pointing) gestures;
these have been recently explored in AR-HRI but only through
a video survey [12]. The gestures had both functional and
social purposes, as discussed in Section IV-C.

IV. EXPERIMENT DESIGN

A single-session experiment consisting of two parts was
conducted with approval by our university IRB (UP-16-
00603). The first part was a two-condition between-subjects
experiment to test the mixed reality arms. All participants wore
the ARHMD and interacted with both physical and virtual ob-
jects as part of a math puzzle game. The independent variable
was whether participants had arms on their Kuri robot (Ex-
periment condition) or not (Control condition). We collected
subjective measures including perceived physical presence,
social presence, ease of use, helpfulness, and usefulness from
Heerink et al. [38], adapted for the mixed reality robot. Task
efficiency was objectively measured using completion time
as is standard in AR-HRI [11]. After the first part of the
experiment was completed, a survey of 7-point Likert scale
questions abd a semi-structured interview were administered.

The second part of the experiment involved all participants
in a single condition. The participants were shown a video
of each of the six MR arm gestures and asked to rate each
gesture’s valence on a decimal scale from very negative (-
1.00) to very positive (+1.00), as in prior work [39], and to
describe verbally, in written form, what each gesture conveyed.

A. Part 1: Mixed Reality Mathematics Puzzles

Participants wore the Hololens and were seated across from
Kuri (Fig. 3) with a set of 20 colored physical blocks on
the table in front of them. The blocks were numbered 1-9.
The block shapes were: cylinder, cube, cuboid, wide cuboid,
and long cuboid. The block colors were: red, green, blue, and
yellow. The participants’ view from the Hololens can be seen

Fig. 3: Participant wearing the Hololens across from Kuri
(left). Two sides of a single physical cuboid block (right).

in Fig. 4, with labels for all objects pertinent to solving the
mathematics puzzle. The view included cream-colored blocks
in the same variety of shapes, labeled with either a plus
(+) or minus (-) sign. Participants were asked to solve an
addition/subtraction equation based on information provided
on the physical and virtual blocks, and virtually input the
numeric answer.

Participants were shown anywhere from 1 to 8 cream-
colored virtual blocks (B) for each puzzle. To discover the
hidden virtual block color, participants clicked on a virtual
block (by moving the Hololens cursor over it and pressing a
hand-held clicker); in response, Kuri’s chest LED (D) lit up
in the hidden block color. In the Experiment condition, Kuri
also used MR arms to point to the virtual color indicator (E)
of that color.

Once the color was so indicated, the participants selected a
physical block (A) with the same shape and color. The number
displayed on the physical block was part of the math equation.
The + or - on the virtual block indicated whether the number
should be added or subtracted. Once all virtual-to-physical
correspondences for the blocks were found, participants added
or subtracted the numbers into a running sum (initialized at
0), calculated the final answer, and input it into the virtual
answer input (C).

At the start of the session, participants were guided through
the process in a scripted tutorial (Fig. 4). They were told to
click on the virtual cylinder on the far left. Once clicked,
Kuri lit up its chest LED in red and pointed at the red virtual

Fig. 4: View when clicking a virtual block. Kuri is displaying
red on its chest and pointing to the red sphere to indicate the
virtual clicked block to the corresponding physical block color.
From left to right, the blocks read: 9, 1, 8, 4, 5.



ball-shaped color indicator. Participants then grabbed the red
cylinder with the number 9 on it. This process was repeated
for all the blocks. The resulting sum was: {(-9), (+1), (-8),
(-4), (+5)} = -15; it was input into the virtual answer.

Kuri used social gestures in response to participants’ an-
swers in both conditions. For a correct answer, Kuri performed
the positive physical gesture (“gotit”); for an incorrect answer,
Kuri performed the negative physical gesture (“sad”).

In the Experiment condition, Kuri also used the positive and
negative mixed reality arm gestures (Fig. 1) synchronized with
the positive and negative physical gesture, respectively. We
combined the physical and mixed reality gestures, as opposed
to using mixed reality gestures only, based on feedback
received from a pilot study. Participants in the pilot study
indicated that gestures with both the body and mixed reality
arms (as opposed to mixed reality arm gestures only) created
a more integrated and natural robot appearance.

After the tutorial, participants attempted to solve a series
of up to seven puzzles of increasing difficulty within a time
limit of 10 minutes. When participants successfully input the
correct answer to a puzzle, they advanced to the next puzzle.
If the time limit was exceeded or all puzzles were completed,
the system halted. Participants were then asked to do a survey
and a semi-structured interview described in Section IV-D.

B. Ensuring Gesture Presentation Consistency

The puzzle task was designed to mitigate inconsistencies
across participants. The first mitigation method addressed
gesture randomness and diversity. The Experiment condition
used gestures from the set of positive (PG = {cheer, clap,
wave dance}) and negative (NG = {facepalm, shoulder shrug,
arm cross}) gestures. To preserve balance, we first chose
gestures randomly without replacement for each set, thereby
guaranteeing that each gesture was shown, assuming at least
3 correct and 3 incorrect answers. Once all gestures from a
group were shown, the gestures were chosen randomly, with
replacement. The Control condition did not require methods
for ensuring gesture diversity since Kuri used a single way of
communicating correct answers and incorrect answers.

Steps were also taken to avoid only positive gestures being
shown for users who had all correct answers. First, all par-
ticipants were shown an incorrect answer and gesture during
the tutorial. Second, some puzzles had a single physical block
with two numbers on it (Fig. 3). In those cases, participants
were told that the puzzle could have two answers. If their
first answer was incorrect, they were told to turn the block
over and use the number on the other side. Puzzles 3-7 all
had this feature. Regardless of the participant’s initial guess
for these puzzles, they were told told they were incorrect and
then shown a negative gesture. If the initial guess was one of
the two possible answers, it was removed from the possible
answers. After the initial guess, guesses were said to be correct
if they were in the remaining set of correct answers. This
consistency method ensured that each participant saw all of
the negative gestures.

C. Part 2: Gesture Annotation

All participants were shown a video of Kuri using the
arm gestures, as seen in Fig. 1 and can be found at https:
//youtu.be/Ff08E9hvvYM. The video was recorded through the
Hololens camera, giving the same view as seen by participants
in the Experiment condition of the math puzzles. After the
participants watched all gestures once, they were given the
ability to rewind and re-watch gestures as they responded
to a survey. The gesture order of presentation was initially
randomly generated and then presented in that same order to
all participants. In total, the second part of the experiment took
5-10 minutes.

D. Measures and Analysis

We used a combination of objective and subjective measures
to characterize the difference between the conditions.

Task Efficiency was defined as the total time taken to com-
plete each puzzle. We also noted users that did not complete all
puzzles within the 10 minute time limit. The post-study 7-point
Likert scale questions used 4 subjective measures, adapted
from Heernik et al. [38] to evaluate the use of ARHMD
with Kuri. The measures were: Total Social Presence, Attitude
Towards Technology, Perceived Ease of Use, and Perceived
Usefulness. Total Social Presence measured the extent the
robot was perceived as a social being (10 items, Cronbach’s
α = .89). Attitude Towards Technology measured how good
or interesting the idea of using mixed reality with the robot
was (3 items, Cronbach’s α = .97). Perceived Ease of Use
measured how easy the robot with mixed reality was to use (5
items, Cronbach’s α = .73). Perceived Usefulness measured
how useful or helpful the robot with mixed reality seemed (3
items, Cronbach’s α = .81).

Participants rated the robot’s physical (0.00) to virtual (1.00)
teammate presence to a granularity of two decimal points (e.g.,
0.34) and were able to see and check the exact value they input.
This measure was used to gauge where Kuri was perceived as
a teammate on the Miligram virtuality continuum [16].

Qualitative coding was performed on the responses to the
post-study semi-structured interviews, to assess how emotional
and helpful Kuri seemed to the participants. Participants from
the Experiment condition were also asked how “attached” the
arms felt on Kuri; this question was coded for only those
participants (Table I). To construct codes and counts, one
research assistant coded for: “How emotional was Kuri?” and
“How helpful was Kuri?” without looking at the data from
the Experiment condition. Another assistant coded for: “Do
the arms seem to be a part of Kuri?” for participants in
the Experiment condition. Codes were constructed by read-
ing through interview transcripts and finding ordinal themes.
Example quotes for each code are shown in Table I.

For the gesture annotation, we used a similar approach to
Marmpena et al. [39]: users annotated each robot gesture on
a slider from very negative (-1.00) to very positive (+1.00), in
order to measure valence. The slider granularity was to two
decimal points (e.g. -0.73) and participants were able to see
the precise decimal value they selected.



To test annotator repeatability and ability to distinguish
gestures, we conducted an inter-rater reliability test. We were
interested in measuring the repeatability of choosing a single
person from a generalized population to rate each gesture. To
measure inter-rater reliability, we used intraclass correlation
with a 2-way random effect model for a single participant
against all participants (referred to as “Raters”) among the
six gestures (referred to as “Subjects”) to find a measure
for absolute agreement among participants. We used Eq. 1
where k denotes the number of repeated samples, MSR is
the mean square for rows, MSE is the mean square error,
MSC is the mean square for columns, and n is the number of
items tested [40]. We used k = 1 as we were interested in the
reliability of agreement when choosing a single rater to rate
the gestures against all other raters. We used the icc function
from the irr package of R (v3.6.0, https://cran.r-project.org/)
with parameters “twoway”, “agreement”, “single”. According
to Koo et. al [40], poor values < 0.5, moderate values < 0.7,
good values < 0.9, and excellent values ≥ 0.9.

ICC(2, k) =
MSR −MSE

MSR + MSC−MSE

n

(1)

Each gesture also had an open-ended text box where users
were asked: “Please describe what you believe gesture X
conveys to you” where ‘X’ referred to the gesture number.
These textual data were later coded by a research assistant
(Table II). Codes were constructed as the most common and
relevant words for each gesture. Example quotes for each code
are also included in Table II.

V. RESULTS

A. Participants

A total of 34 participants were recruited and randomly
assigned to one of two groups: Control (5F, 12M) and Ex-
perimental (8F, 9M). Participants were University of South-
ern California students with an age range of 18-28 (M =
22.3, SD = 2.5).

B. Arms Vs. No Arms Condition

For the math puzzles, we analyzed our performance metric
but saw no statistically significant effect between conditions.
An independent-samples t-test was conducted to compare Task
Efficiency between the two experiment conditions. There was
not significant difference in scores for arms (M = 83.0, SD =
33.0) and no arms (M = 77.8, SD = 23.7) conditions
(t(16), p = .54). There were an equal number of participants
(6) in each group who timed out at 10 minutes.

We saw no significant effect among each metric, as seen in
Fig. 5. Mann-Whitney tests indicated no significant increases
in Total Social Presence between arms (Mdn = 4.7) and
no arms (Mdn = 4.0) conditions (U = 115.5, p = .16),
Attitude Towards Technology between arms (Mdn = 6.0)
and no arms (Mdn = 6.0) conditions (U = 117.5, p = .18),
Perceived Ease of Use between arms (Mdn = 5.6) and
no arms (Mdn = 5.6) conditions (U = 117.0, p = .17),
and Perceived Usefulness between arms (Mdn = 5.33) and

Fig. 5: No statistical significance found for subjective mea-
sures. Boxes indicate 25% (Bot), 50% (Mid), and 75% (Top)
percentiles. Notches indicate the 95% confidence interval
about the median calculated with bootstrapping 1,000 particles
[41]. Thus notches can extend over the percentiles and give a
“flipped” appearance (e.g., {Attitude, NoArms}).

no arms (Mdn = 5.0) conditions (U = 138.0, p = .41).
Qualitative coding for interviews can be found in Table I. An
explanation of the qualitative coding used for the interviews
is found in Section IV-D.

Most participants answered towards the ends of the
physical-to-virtual teammate scale, with very few near the
middle (Fig. 6). Consequently, we divided the participants into
two groups: “Physical Teammate” (ratings ≤ 0.5, n = 13)
and “Virtual Teammate” (ratings > 0.5, n = 21) (Fig. 8)
and performed a Chi-Square Independence test. A significant
interaction was found (χ2(1), p = .002). Participants in the
Experiment condition, who experienced the arms, were more
likely (64.7%) to rate Kuri as a physical teammate than
participants in the Control condition, who did not experience
the arms (11.8%). Next, we performed post-hoc analyses on
subjective measures with the physical and virtual teammate
binned groups.

C. Physical Vs. Virtual Teammate Bins

We analyzed our survey data with regard to the two bins and
saw significant effects among metrics (Fig. 7). Mann-Whitney
tests indicated a significant increase in Total Social Presence
between physical (Mdn = 4.8) and virtual (Mdn = 3.9)
groups (U = 86.5, p = .04, η2 = .092), Attitude Towards
Technology between physical (Mdn = 6.7) and virtual
(Mdn = 5.7) groups (U = 73.0, p = .01, η2 = .149), and
Perceived Ease of Use between physical (Mdn = 6.0) and
virtual (Mdn = 5.4) groups (U = 79.0, p = .02, η2 = .122).
We found only a marginal significant increase for Perceived
Usefulness between physical (Mdn = 5.3) and virtual
(Mdn = 5.0) groups (U = 93.5, p = .07, η2 = .068).



TABLE I: Qualitative Interview Coding

Code No
Arms Arms Quote

Not Emo-
tional 7 5 “I didn’t feel any emotion from the

robot”
Close to
Emotional 9 7 “Like not so emotional because the task

was not based on the emotion”

Emotional 1 4 “It can talk and tell different emotions
when I answer questions differently”

Very Emo-
tional 0 1

“When it went like *crosses arms* it was
like ‘come on you’re not helping me

here.’ And when her *acts out cheering*,
yeah I would say very”

Not Help-
ful 6 2 “No”

Somewhat
Helpful 2 3 “Sort of, yeah”

Helpful 9 12
“I like the way it had the visual feedback
when I get right or wrong, and I just feel

like it could reinforce it."
Are Arms
a Part of
Kuri?

- Arms
Count Quote

No - 2 “They seemed pretty detached”

Somewhat - 4 “When it was pointing things it did seem
like it a little bit”

Mostly - 3 “I would say 60 percent”, “8/10”

Yes - 8 “What gave me the most information was
her arms”

D. Gesture Validation

We analyzed the data from gesture annotation in order
to validate participants’ ability to distinguish the valence of
gestures and consistency in interpreting gestures. As seen
in Fig. 9 and Table III, participants could distinguish the
valence (negativity to positivity) of the gestures. The two-way,
agreement intraclass correlation for a single rater, described in
Section IV-D, resulted in a score ICC(A, 1) = 0.77 with 95%
confidence interval 0.55-0.95, and F (5, 190) = 125, p < 0.001,
which constitutes moderate to good reliability. Qualitative data
are summarized in Table II. Explanation for coding these data
can be found in Section IV-D.

Fig. 6: Stacked histogram with clustering to the left and right
of 0.5 rating.

Fig. 7: Significant increases for the first 3 measures with a
marginally significant increase for measure 4. See Fig. 5 for
notch box-plot explanation.

VI. DISCUSSION

The arms vs. no arms conditions did not show statistical
significance for Task Efficiency nor for subjective measures.
However, the two conditions were highly correlated with user
perception of either a physical or virtual teammate as binned
categories. We postulate that participants may have associated
arms in general with more physical tasks, such as picking up
objects or pointing. The Experiment condition also involved
more overall movement, which may have conveyed Kuri as
more of a physical teammate to participants who may have
associated movement with physicality.

The binned subjective results suggest a "better" teammate
for a physically associated mixed reality robot. This is consis-
tent with the evidence for the importance of embodiment for
social presence [13]. Although having arms strongly correlated
with the perception of a physical teammate, there could

Fig. 8: Participants in the Experiment condition were more
likely to rate the mixed reality robot as physical.



TABLE II: Gesture Description Qualitative Code Counts

Gesture Code : Count Example Quote
G1: Facepalm Disappointment :10, Frustration: 4, Facepalm: 3 “Facepalm, the robot is frustrated/disappointed”
G2: Cheer Happy: 8, Celebration: 7, Cheer: 6 “That you got the answer correct and the robot is cheering you on”

G3: Shrug Don’t Know Answer: 11, Shrug: 5, Confuse: 4 “Shrugging, he doesn’t know what the person is doing or is disappointed in
the false guess”

G4: Arm Cross Angry: 8, Disappointment: 7, Arm Cross: 4 “Crossing arms. ‘Really??’ mild exasperation or judgment.”

G5: Clap Happy: 13, Clapping: 7, Excited: 4 “It’s a very happy, innocent clap. I like the way its eyes squint, gives it a real
feeling of joy.”

G6: Wave Dance Happy: 11, Celebrate: 4, Good Job: 4 “Celebration dance, good job!”

Fig. 9: Distribution on ability to differentiate gesture valence.

be other factors that influenced physical presence. Future
mixed reality robot research may explore factors that increase
physical presence of the overall agent to ground mixed robot
abilities such as the increased social expressive range of
gestures discussed in this work. Given the flexibility and the
lack of physical constraints of the MR arm interface, new
gestures and actions could be added and adapted to other
scenarios, as explored in some previous work in AR-HRI [11],
[12].

Gestures were distinguishable on a valence scale with a very
high agreement reliability for the scoring among participants,
as seen in the intervals reported in Table III. This suggests
gesture annotation is highly repeatable. Users had slightly
more difficulty in rating the negative gestures than positive
ones. Two participants also rated all gestures as positive,
as indicated by the 6 erroneous marks for the 3 negative
gestures in Fig. 9. These data were included in all reported
statistics and may indicate a confusion in the rating scale. The
qualitative data (Table II) also support the distinguishability
of the gestures as intended (i.e., indicating it was a “clapping”
gesture).

TABLE III: Valence Rating Percentiles by Gesture.

P% G1 G2 G3 G4 G5 G6
P25 -0.85 0.72 -0.59 -0.87 0.64 0.55
P50 -0.69 0.88 -0.30 -0.58 0.84 0.76
P75 -0.41 1.00 -0.09 -0.36 1.00 1.00

VII. LIMITATIONS AND FUTURE WORK

The first generation Hololens posed many issues. As re-
ported by participants, the virtual arms were difficult to see
due to the limited field of view of the AR/VR headset. Hand
tracking could be used to supplement direct, intuitive, and
safe interaction with mixed reality extensions to robots. For
example, the mixed reality arms in this study could be given
the ability to share a high-five gesture with a study participant.
Eye tracking, which has been used for modeling engagement
[42] and joint attention [43], can also provide real time input
towards autonomous control for prompting users or to gesture
to points of interest.

The reported study consisted of a limited number of gestures
and limited measures of those gestures. Although results
showed that the gestures were distinguishable on a scale for
valence and their intended meaning, we did not have subjects
annotate for arousal. The two-factor scale of valence and
arousal is commonly used as a metric of measuring affect and
has been used previously to rate robot gestures [39]. Measuring
arousal or a higher feature scale for gestures could provide
further insight into their perceived meaning and into how they
differ from physical gestures.

Many study participants reported in their post-study inter-
views that Kuri’s interactions were limited. Reports of Kuri
being seen as a “referee” suggest that the robot is seen as closer
to a judge than a peer or teammate. Adaptive robot characters
could potentially leverage the unique modalities, constraints,
and data ARHMD provide in order to more adaptively meet
user preferences, leveraging the socially expressive capabilities
of the mixed reality arms.

VIII. CONCLUSION

This work explored the use of mixed reality arms for
increasing the range of social expressivity for low-expressivity
robots. Integration of the expressive modality of mixed reality
has the potential to increase a robot’s expressive range as well
as increase its physical presence. Future work may explore
increasing the expressive range while also leveraging real-
time data (e.g., eye gaze) to estimate user engagement and
express appropriate mixed reality robot responses. This could
lead toward more fluid, expressive, and effective human-robot
interaction.
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