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Abstract—From RViz to augmented reality (AR), a wide
variety of robot signal visualizations exist for conveying robot
capabilities. Many of the visualizations designed for AR, how-
ever, have not isolated multiple salient Virtual Design Elements
(VDEs) for a given signal and comparatively evaluated com-
binations of those VDEs. To address this, we identify multiple
VDEs for AR signaling of the following core robot capabilities:
navigation, light detection and ranging (LiDAR), camera, face
detection, audio localization, and natural language processing.
We evaluated each signal’s VDE combinations with an Amazon
Mechanical Turk study (n=150) where participants watched 4
videos for each signal (consisting of 2 independent VDE choices)
and rated the clarity and visual appeal of each signal. The
results define a set of the most clear and visually appealing
signal visualization designs and inform about interaction effects
among VDEs. The resulting VDEs offer design insights and
a baseline for continued research into AR robot capability
signalling.

I. INTRODUCTION

Whether it is a young student interacting with a socially
assistive robot tutor in school or a trained roboticist de-
bugging a system being created, the ability for a user to
accurately estimate a robot’s capabilities is critical for ef-
fective human-robot interaction (HRI). Within HRI research,
perceived robot capability is defined as a user’s perception of
the robot’s true capabilities [1]. Under- and over-perception
refer to a mismatch between the user’s perceptions about the
robot and the robot’s true capabilities [1]. Over-perception
occurs when a user expects the robot to do something it is
not capable of, while under-perception occurs when the user
misses an interaction capability the robot possesses.

Visualizing robot capabilities as explicitly as possible aids
capability signalling. Widely used software such as RViz [2]
displays robot sensors (e.g., cameras) and reasoning capabili-
ties (e.g., mapping and navigation waypoints). Further situat-
ing such visualizations, the field of virtual, augmented, and
mixed reality for human-robot interaction (VAM-HRI [3])
creates virtual objects and places them in a 3D VR space or
directly projects virtual imagery onto the real world. VAM-
HRI aims to increase the robot’s Expressivity of View (EV)
[4], the ability to express its capabilities and its internal
Complexity of Model (CM) [5]. There are many examples
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Fig. 1: Combinations of Virtual Design Elements (VDEs)
for navigation visualization (left) and LiDAR visualization
(right). Details of each signal design are found in Sec. III.

of increasing EV in VAM-HRI [6], from recreating RViz for
AR (e.g., iviz [7]) to creating VR interfaces [8].

Many of these VAM-HRI signal designs, however, either
explore a distinct set of visualizations (e.g., [9]) or only
pose a single signal design for comparison against a non-
VAM interface (e.g., RViz). To address these shortcomings,
we created a set of salient Virtual Design Elements (VDEs
[6]) for a set of core robot capabilities: navigation, light
detection and ranging (LiDAR), camera, face detec-
tion, audio localization, and natural language process-
ing (NLU). We created two independent VDEs for each
capability and validated the pairwise designs on Amazon
Mechanical Turk (AMT) in a video-based study (n=150).
AMT is a standard tool used in VAM-HRI research for
initial signal design studies [5]. Four videos of each signal
displaying all combinations of the independent VDEs were
shown to participants and evaluated for clarity and visual
appeal. The results determine the clearest and most visually
appealing design choices while also highlighting possible
interaction effects of intra-signal VDE:s.

II. BACKGROUND
A. Perceiving robot capabilities

Understanding a given robot’s capabilities is increasingly
important as robots become more common in everyday life
[?]. Currently, robots are often incomprehensible to users,
who struggle to predict their capabilities and intentions due
to poor information exchange where neither users nor robots
can understand what the other is explicitly or implicitly
communicating [6]. Several studies have aimed to improve
human-robot communication by having the robot understand



and communicate through human non-verbal cues such as
gaze, gesture, and natural language [10]. Such communi-
cation methods, however, may not be sufficient to convey
complex information and are not generalizable to all robot
embodiments; communication should be form-agnostic in its
ability to convey complex robot signals [10].

B. Virtual, Augmented, and Mixed Reality for Human-Robot
Interaction (VAM-HRI)

The VAM-HRI field focuses on leveraging robot-agnostic
VAM technologies (e.g., VR/AR head-mounted displays)
to facilitate communication. VAM technology can be used
independently of the robot’s embodiment and can communi-
cate complex signals through 3D virtual imagery [6]. Such
imagery has been shown to increase the ease of robot pro-
gramming, remote teleoperation [7], [8], [11], human intent
estimation [12], socially assistive tasks [13], and human-
robot teaming tasks [9]. AR visualizations of robot signals
improve human-robot communication by providing complex
information in a simplified and accessible manner [6].

VAM-HRI works focusing on increasing a robot’s Expres-
sivity of View [5], however, typically create a task-specific
set of distinct signals (e.g., [9]) or create a single design
to be compared against a traditional interface (e.g., [8]) or
no interface (e.g., [13]). To address this limitation, our work
explores the design space for 6 common robot capabilities
by pairing and comparing multiple Virtual Design Elements
(VDE:s [6]) for each signal. The goal of this work is to better
understand the design space for VAM-HRI robot capability
signalling.

ITII. VIRTUAL DESIGN ELEMENTS OF A SIGNAL

To create each signal’s Virtual Design Element (VDE [6]),
we took inspiration from prior visualization research and ex-
isting visualization software (e.g., RViz [2]). We used Unity
3D game engine v2021.2.7f1 to create the visualizations
for this work and have made them open-source and avail-
able at https://github.com/interaction-lab/
NRI-SVTE. A video of all signal VDE combinations
we created can be found at https://youtu.be/Xw2_
kHyN-xA.

A. Navigation

We created visualizations for the robot’s ability to plan
and execute paths in the environment.

(a) Robot Outline + Trail

(b) Arrow + No Trail

Fig. 2: Navigation visualizations.

Robot Outlines / Arrows: Two different sets of navigation
waypoints were designed: ghost robot outlines and arrows.
The ghost robot outlines (Fig. 7a), inspired by [8], place
semi-transparent robots at each waypoint, oriented in the
goal direction of the waypoint. The outlines were scaled
down so as to reduce visual clutter and allow the robot to
fully cover the outline. The 3D arrows were inspired by RViz
[2]. We expected the differences between the two to be in
the salience of direction (arrows > outline), environment
occlusion (arrow > outline), and visual appeal (outline >
arrow).

Trail / No Trail: For a sense of momentum and direction,
a trail was added to the visualization (Fig. 7a), but it occludes
some of the environment.

B. LiDAR

We created visualizations of the robot’s ability to use
LiDAR sensors to detect nearby objects.
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(a) Lines + No Pulse (b) Points + Pulse

Fig. 3: LiDAR visualizations.

Lines / Points: The robot measures the distance to objects
in the environment with a 180 LiDAR sensors spaced 1°
apart. 3D lines and points were used to indicate the distance
returned by each of the sensors. The lines (see Fig. 3a)
occupied the same position as the laser beam emitted by
each sensor and were displayed as opaque and colored, with
a gradient from dark blue at the source to white at the
maximum distance measurable by the sensor. The points,
inspired by RViz [2], were opaque 3D spheres. The color of
each sphere was modulated to indicate the distance from the
robot according to the same gradient scale used on the lines.
The expected differences were in the salience of distance
from the robot (lines > points), indication of lasers (lines >
points), environment occlusion (points > lines) and visual
appeal (lines > points).

Pulse / No Pulse: In order to give the impression that
the sensors emitted lasers to measure distance, fixed length
white lines were visualized emitting at a fixed interval from
each sensor. The lines occluded part of the environment and
do not continue to align with the sensors as the robot moves,
visible in Fig. 3b.

C. Camera

We created visualizations of the robot’s ability to to collect
visual information through a camera located in its left eye.
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(a) HUD + No Pyramid (b) In Scene + Pyramid

Fig. 4: Camera visualizations.

In Scene / HUD: Input from the robot’s camera was
visualized in one of two locations depending on the con-
dition. In the in scene condition, the input was visible in a
square window that hovered above the robot (see Fig. 4b).
As the video rotated around the robot to show the scene from
multiple viewpoints, the window rotated to always face the
participant. In the HUD (heads-up display) condition, the
input was visible in a fixed square on the screen. In both
conditions, a grey frame was placed around the window to
increase salience. These visualizations were inspired by the
difference in “User-anchored” and “Robot-anchored* mixed
reality design elements [5], [6].

Pyramid / No Pyramid: A 3D translucent pyramid (see
Fig. 4b) visualized the portion of the scene that was visible
to the robot’s camera, inspired by camera depictions in
game engines. The pyramid was fixed to the robot’s eye
containing the camera and rotated with the robot’s head
to correspond with the camera input at all points in the
video. The expected differences were in the salience of the
portion of the environment visible to the robot (pyramid > no
pyramid), environment occlusion (no pyramid > pyramid),
and how appealing it is to look at (pyramid > no pyramid).

D. Face Detection

We developed visualizations of the robot’s ability to detect
faces from its camera input.

(a) Box + In Scene (b) Mesh + Not In Scene

Fig. 5: Face detection visualizations.

Box / Face Mesh: Two different sets of face markers were
designed: green boxes and triangle meshes. The boxes (see
Fig. 5a), inspired by OpenCV [14] face detection software,
were green square boxes fixed around the faces of each
person in the robot’s camera’s field of view. Translucent
triangle meshes, inspired by face detection software such
as Google’s MediaPipe [15], were placed on each character
model in the same way as the boxes. Both face markers were

sized to fit each character model and rotated with the robot’s
head to remain oriented toward the robot’s camera.

In Scene / Not In Scene: The boxes and meshes were
always visible in the camera input on the HUD. However, in
the in scene condition, the face markers were also visualized
as objects fixed to the faces of the people in the scene. In
the not in scene condition, the markers were only visible in
the HUD window but not in the environment.

The expected differences were in the salience of faces (in
scene > not in scene) and environment occlusion (in scene >
not in scene), inspired by the difference in “User-anchored”
and “Environment-anchored* mixed reality design elements

(51, [6].

E. Audio Localization

We created visualizations of the robot’s ability to to
estimate the positions of sources sound in the environment.

(a) Cones + Small

(b) Spheres + Large

Fig. 6: Audio localization visualizations.

Spheres / Cones: 3D objects of two distinct shapes
(spheres, cones) were overlayed around the robot and in-
creased in size and color gradient in relation to the loudness
input received from the directional microphones. If no sound
was perceived, the objects remained hidden. The cones and
the spheres were inspired by [16] and [17], [18], respectively.

Small / Large: Small/Large visualizations differed by how
much the 3D objects were increasing in size with respect to
the microphone input. This characteristic explored the trade-
off between robot visibility and visual indication of loudness.

F. Natural Language Understanding (NLU)

We created visualizations of the robot’s ability to to
analyze spoken language and make predictions about the
user’s meaning. The main elements of the visualizations
were:

o A speech bubble containing the speech understood by
the robot in real time, with keyword highlighting [19]
as soon as the intents were extracted by NLU;

o A horizontal bar diagram, indicating the confidence for
each intent understood in the sentence;

o Graphical elements (e.g., labels, curly brace) providing
additional contextual information about the elements in
the visualization.

Cluttered / Sparse: We explored the effect of the de-

cluttering principle [20] on our visualization. The cluttered
version presented all the graphical elements, providing more
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(b) 3D + Cluttered

Fig. 7: NLU visualizations.

information to the user but cluttering the visualization. The
sparse version removed the graphical elements and provided
less information about the relationship between the elements
in the visualization.

3D / 2D: In the 3D/2D versions, the bar chart was
displayed in its 3D or its 2D version.

IV. METHODS

To increase reproducibility, the study methods are also
included in the open-source repository wiki https://
github.com/interaction—-lab/NRI-SVTE/wiki.

A. PFarticipants

Participants were recruited through AMT. To determine
the study size, we followed [21]: 50 + 8 x m where m is the
number of independent variables (2 for each of the 6 signals,
thus m = 12), resulting in 50+ 8+ 12 = 146 participants. We
added 4 more participants in the case of incomplete data.

Inclusion criteria for the study were:

o At least 18 years of age;

¢ In the United States or US Minor Outlying Islands;
e Number of AMT HITs Approved > 1000;

o AMT HIT Approval Rate > 99%.

The 150 participants who completed the survey identified
in open-ended questions as: Gender Identity — Cis Woman :
1, Female: 52, Male: 95, and left blank: 2; Race — African
American : 3, American : 1, Asian : 8, Black : 9, Caucasian
: 13, European : 1, Hispanic : 3, Latina : 1, Middle Eastern
. 1, Native American : 1, White : 101, and left blank : §;
Age — Mdn : 35, X :37.22, 0 :9.74, and Range(20,71).

B. Procedure and Measures

This study was approved by the University’s Institutional
Review Board (IRB #UP-20-00030). Each participant first
consented to the study, confirmed that their audio worked,
and filled out a set of demographic questions. We used
a within-subjects study design in which participants were
shown four ten-second videos displaying each combination

of conditions for the six signal visualizations described in
Sec. III. Both the signal set order and the order of videos
within each signal set were randomized, with the exception
that the camera visualization was always shown immediately
before the face detection visualization, as the latter depended
on the former.

We collected quantitative and qualitative data to measure
the participants’ opinions of the visualizations and their
understanding of the robot based on the videos (found at
https://youtu.be/Xw2_kHyN-xA), shown from the
perspective of someone wearing an AR headset. The camera
moved to different points of view as the robot moved
to demonstrate a capability. Camera views were replicated
exactly within each signal across conditions.

1) Quantitative Data: Participants were not told what
capability of the robot was visualized in the videos when
they first watched them. For each video, they rated the clarity
and visual appeal via two 7-point Likert items ("The video
shows the capability in a clear way", "The video is visually
appealing") from “Strongly Disagree” to “Strongly Agree.”
The items were adapted from [22] and [23], respectively.

2) Qualitative Data: After watching and rating the four
videos, participants were asked the following three open-
ended questions: "What did you like about the visualizations
you scored higher?" "What did you dislike about the visu-
alizations you scored lower?" and "What capability of the
robot do you think is visualized in the videos above?". Once
they had answered these three questions, the signal name
and a short paragraph describing the signal (similar to those
found in Sec. III) were revealed to the participant. They were
then asked one additional open-ended question, "How could
the visualizations above be improved to better illustrate the
robot’s ability to perform [signal name]?"

Participants were required to watch all four videos and
answer all questions about them before moving on to the
next signal. The process was repeated until all six signal sets
were completed. Upon completion, each participant received
an Amazon gift card worth US$6.25.

C. Analysis

We performed both quantitative and qualitative analyses
of the results. Survey data were treated as ordinal so we
used non-parametric tests [24]. To compare signal clarity and
visual appeal, Wilcoxon signed-rank tests were used with
Holm’s corrected p values [25] and « levels <.05%, <0.1%*,
and <.001#**. The brute force common language effect size
(CLES) proposed by Varga et al. [26] was calculated; mean
and standard deviation calculations are not appropriate for
ordinal data [24]. CLES is the proportion of paired samples
(sgo, sg1) where sgo is higher than sgq. To confirm the
signals portrayed the intended capability, we also annotated
the open response question ‘“What does this visualization
portray?” with the criteria set in Sec. III. For qualitative
analysis, we read through all participant open-ended answers
marking down themes and associated quotes to each theme.
All 150 participants were included in the analysis given the
strict criteria described in Sec. IV-A.
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TABLE I: Navigation results sorted by pcor.

Combination CLES  pcor
Clarity
RobotOutline + Trail / Arrow + No Trail 0.614 <.001%**
RobotOutline + No Trail / Arrow + No Trail 0.589 <.001%**
RobotOutline + Trail / Arrow + Trail 0.568 .015*
Arrow + Trail / Arrow + No Trail 0.549 312
RobotOutline + No Trail / Arrow + Trail 0.543 449
RobotOutline + Trail / RobotOutline + No Trail  0.526 .58
Visual Appeal
RobotOutline + No Trail / Arrow + No Trail 0.589 .001**
RobotOutline + Trail / Arrow + No Trail 0.598 .003**
RobotOutline + Trail / Arrow + Trail 0.565 178
RobotOutline + No Trail / Arrow + Trail 0.555 25
Arrow + Trail / Arrow + No Trail 0.538 427

RobotOutline + Trail / RobotOutline + No Trail  0.51 :999

V. RESULTS
A. Navigation

1) Quantitative: Survey results for Wilcoxon signed-rank
test are given in Table I. A total of 102 participants (68%)
correctly identified the robot’s navigation capability.

2) Qualitative Analysis: Likes/Dislikes— Participants re-
ported liking the arrows for their simplicity, clarity of direc-
tion, and lack of clutter, reporting the opposite for the robot
outlines. Alternatively, other participants enjoyed the robot
outlines citing them as more clear and visually “exciting”
or “cool”, reporting the arrows as “boring”. A similar trend
emerged for robot trails where participants liked the clarity
of the trail (e.g., P12: “I like the trial in which it left behind
to show where it was coming from and how it was moving
with the way points”) while those opposed disliked the clutter
(e.g., P67: “I didn’t like the blue line that followed him
showing him actually doing it. It was overkill”).

Suggested improvements— A common theme of dynamic
objects and colors were suggested (e.g., P12 : “as the robot
goes through the path, the way point that the robot travel
should fade or change colors”). Another suggested theme
were requests for indication of robot planning (e.g., P96:
“Before the robot moves, there should be a small thought
bubble with a travel plan”) as well as a map (e.g., P100:
“Show a map”).

Other unique factors— Participants described the visual-
ization videos as “smoother” than others (e.g., P1: “[It was]
less busy and the camera less nauseating”). Participants also
reported confusion as to why the robot did not follow the
straight line path (e.g., P138: “Why did it ‘walk’ in a rounded
fashion when the lines were straight?”).

B. LiDAR

1) Quantitative Analysis: Survey results for Wilcoxon
signed-rank test are shown in Table II. A total of 62 par-
ticipants (= 41.3%) correctly identified the robot’s LiDAR
capability.

2) Qualitative Analysis: Likes/Dislikes— Rather than com-
menting on the individual points or lines for each sensor,
participants emphasized the overall shape they formed when

TABLE II: LiDAR results sorted by pcop-

Combination CLES  pcor
Clarity
Line + No Pulse / Point + No Pulse  0.658 <.0071%#**
Point + Pulse / Point + No Pulse 0.598 <.001%#**
Line + No Pulse / Line + Pulse 0.586 <.00]%#**
Line + No Pulse / Point + Pulse 0.56 .036*
Line + Pulse / Point + No Pulse 0.563 .098
Point + Pulse / Line + Pulse 0.528 422
Visual Appeal
Line + No Pulse / Line + Pulse 0.662 <.0071#**
Line + No Pulse / Point + Pulse 0.622 <.001%#**
Point + No Pulse / Line + Pulse 0.595 <.00]#**
Line + No Pulse / Point + No Pulse  0.584 .003**

Point + No Pulse / Point + Pulse 0.55 .064
Point + Pulse / Line + Pulse 0.541 134

combined. For example, participants perceived the points as
forming a "line" to denote the boundary around the area that
the robot could sense, whereas they described the lines as
forming a "cone" or "fan" around the front of the robot.
Some preferred the points because they left the area around
the robot visible (e.g., P131: “The outline of the sensor area
was clean and simple”) while others found the points too
simplistic to convey the relevant information (e.g., P73: “Just
having a line is confusing and doesn’t really tell you much.”).
Participants described the pulsing videos as "confusing,"
"laggy,” and "glitchy" (e.g., P144: “It looks like a glitch,
as if the robot is creating ice or something when it scoots
along.”) although some understood the pulsing to be a more
accurate representation of how the data are collected.

Suggested improvements— Participants suggested somehow
indicating the objects that had been detected (e.g., P119 :
“When approaching an object, the object should be shown in
red for clarification.”). Another theme among the suggestions
was some indication of the laser light returning to the robot
after reflecting off of an object (e.g., P51: “Maybe if the line
bounced back like a radar”).

Other unique factors— Participants suggested that these
visualizations could be enhanced by including more tex-
tual information about what the robot is doing (e.g., P60:
“Maybe include some sample distances that were sensed
for the viewer to see more clearly what is going (for those
numerically inclined individuals)”).

C. Camera

1) Quantitative Amalysis: Survey results for Wilcoxon
signed-rank test are shown in Table III. A total of 85 partic-
ipants (=~ 56.7%) correctly identified the camera capability.

2) Qualitative Analysis: Likes/Dislikes— Participants re-
ported finding the pyramid helpful and correctly interpreted
it as the portion of the scene visible to the robot (e.g., P90:
“I liked that the visualization is able to show the field of
vision for the robot and gave us a view of what the robot is
seeing without blocking our vision.”). Participants disliked
that the pyramid distorted or obstructed the scene (e.g., P72:
“I didn’t like the way the colors muted when showing the



TABLE III: Camera results sorted by pcop-

TABLE IV: Face detection results sorted by pco,-

Combination

CLES  pcor Combination CLES  pcor
Clarity Clarity
Pyramid + HUD / No Pyramid + InScene 0.735 <.0071%** Box + InScene / Mesh + InScene 0.756  <.001%**%*
Pyramid + HUD / No Pyramid + HUD 0.704  <.001%*%*%* Box + InScene / Mesh + Not InScene 0.747  <.001%*%*%*
Pyramid + InScene / No Pyramid + InScene 0.71 <.0071%** Box + Not InScene / Mesh + InScene 0.738  <.001#%#%*
Pyramid + InScene / No Pyramid + HUD 0.679  <.001%*%*%* Box + Not InScene / Mesh + Not InScene  0.729  <.001***
No Pyramid + HUD / No Pyramid + InScene  0.54 22 Box + InScene / Box + Not InScene 0.524 935
Pyramid + HUD / Pyramid + InScene 0.517  .999 Mesh + Not InScene / Mesh + InScene 0.51 .999
Visual Appeal Visual Appeal

Pyramid + InScene / No Pyramid + InScene 0.621 <.0071%** Box + Not InScene / Mesh + InScene 0.614  <.001%**
Pyramid + HUD / No Pyramid + InScene 0.608  <.001%%*%* Box + Not InScene / Mesh + Not InScene  0.585  .002**
Pyramid + InScene / No Pyramid + HUD 0.597 .002%%* Box + InScene / Mesh + InScene 0.584  .039*
Pyramid + HUD / No Pyramid + HUD 0.583 .005%% Box + InScene / Mesh + Not InScene 0.558 319
No Pyramid + HUD / No Pyramid + InScene ~ 0.529  .999 Box + Not InScene / Box + InScene 0.519  .999
Pyramid + InScene / Pyramid + HUD 0.518 .999 Mesh + Not InScene / Mesh + InScene 0.529  .999

boundaries.” P56: “The extra visual goodies kind of got in
the way”).

Participants preferences for the HUD or in-scene place-
ment of the camera input were often related to the relative
size of the displays. They found that the larger HUD display
was easier to see (e.g., P51: “I liked that the inset picture was
big enough to see well”) but also obstructed the scene. They
found the smaller in-scene window harder to see but less
intrusive (e.g., P84: “I found the smaller window showing
the family less intrusive”), although some still found the in-
scene placement obstructive and misleading (e.g., P12: “The
robots perspective being above its head felt like it blocked out
the people, as well made it look like the robot was thinking
of something”).

Suggested improvements— Participants suggested several
ways to make the pyramid less intrusive in the scene without
decreasing the salience of the visualization. They involved
finding other ways to maintain the outline of the camera
frame without distorting the scene with the translucent mate-
rial (e.g., P59: “Instead of having the lens view be transparent
have it just show an outline or bounding box”, P72: “May
a border line where the boundaries would be, but keep the
colors and visuals not as distorted”).

Other unique factors— As observed in the other signals,
participants assumed the robot could perform functions be-
yond what the real robot was capable of, and suggested the
visualization could better indicate what the robot is not doing
in addition to what it is. In this example, participants were
unsure if the robot was merely "seeing" the people in real
time, or if the robot was taking pictures or recording videos
of the people pictured (e.g., P120: “I think that placing a
small red light bulb that turns on when the robot is recording
or capturing images”).

D. Face Detection

1) Quantitative: Survey results for Wilcoxon signed-rank
test are in Table IV. A total of 109 participants (= 72.7%)
correctly identified the robot’s face detection capability.

2) Qualitative: Likes/Dislikes— Participants overwhelm-
ingly viewed visualizations with green boxes around faces

more favorably than those featuring triangle face meshes.
Commonly cited reasons included visual salience (e.g., P51:
“The green boxes on the faces are easy to see”), and more
obvious meaning (e.g., P63: “The screen mapping of the
face structure wasn’t very clear and was a bit creepy”).
The face meshes were often associated with mistrust of
the robot, although both markers were described by some
participants as unsettling (e.g.,P15: “I didn’t like the green
boxes around the heads. It felt like they were a target”, P134:
“The crosshairs on the faces wasn’t necessary and looked
weird and technologically scary”).

Participants who preferred having the markers in the scene
in addition to on the HUD reported it as a more obvious
indication of what the robot was doing (e.g., P14: “I liked
the green boxes on both the floating frame and the actual
scene, as it was a good way to reference exactly what the
robot was seeing and interpreting”), while others found the
in-scene markers unnecessary (e.g.,P56: “It was clear what
the robot was doing, without the green frames getting in the
way in the main physical scene”).

Suggested improvements— Participants suggested changing
the visualizations to indicate that the robot could differentiate
between people, by numbering the boxes, using different
colored boxes for the different faces, or labeling the boxes
with the names if the robot recognizes specific individuals.
These suggestions are evidence of a larger trend of partici-
pants seeking to clarify the extent of the robot’s capabilities
through the visualizations (e.g., can the robot recognize
human faces, or simply detect them?).

Other unique factors— Participants had mixed suggestions
on what color the box should be. For some, the green boxes
were familiar and recognizable, while others found the green
"creepy" and suggested using a more neutral color.

E. Audio Localization

1) Quantitative Analysis: Survey results for Wilcoxon
signed-rank test are shown in Table V. A total of 58
participants (= 58.7%) correctly identified the robot’s audio
localization capability.



TABLE V: Audio localization results sorted by pcop-.

Combination CLES  pcor
Clarity

Sphere + Small / Sphere + Large  0.523 191

Cone + Large / Sphere + Large 0.532 468

Cone + Large / Cone + Small 0.513 .999

Cone + Large / Sphere + Small 0.51 .999

Cone + Small / Sphere + Large 0.519  .999

Sphere + Small / Cone + Small 0.502  .999
Visual Appeal

Cone + Large / Sphere + Large 0.554  .009**

Cone + Large / Sphere + Small 0.544 219

Cone + Small / Sphere + Large 0.536  .338

Cone + Large / Cone + Small 0.52 999
Cone + Small / Sphere + Small 0.524 999
Sphere + Small / Sphere + Large  0.512  .999

2) Qualitative: Likes/Dislikes— Participants who preferred
the cones described them as cleaner (e.g., P81: “I liked the
smaller circles visuals more because it looked cleaner”) and
less obstructive than the spheres (e.g.,P101: “The bubbles
were too large and surrounded the robot”). Participants who
preferred the spheres found them more salient (e.g., P64:
“The bigger bubble made it clear where the robot was
perceiving the noise from,”). Participants varied widely in
their interpretations of the shapes, referring to the cones
as "dots" and "arrows" and the to the spheres as "bubbles"
or a "ring" formed around the robot as they overlapped. In
some cases, these impressions contributed to the participants’
interpretations of the visualizations (e.g., P43 interpreted the
cones as arrows and expected them to point at the source of
the audio: “I didn’t find the arrows very helpful as it did not
accurately point to the source”).

Suggested improvements— The most common suggestions
included adding a compass or one or more arrows that point
to the source of the sound to more clearly indicate that
the robot is interested in the direction/location of the sound
source, and displaying some kind of icon near the robot to
more clearly signal that the robot can detect sound, such as
an ear or microphone. Participants also suggested changing
the sound source, currently a boom box animated to move
to different locations around the robot in the environment, to
something a robot is more likely to encounter in a home
(e.g.,P3: “I think it can be improved by showing sound
moving from something more realistic, maybe like a toy train
going around a toy track with the robot in the middle”).

Other unique factors— Participants were generally unclear
about where the noise was coming from (i.e., some assumed
the music was coming from the robot rather than the boom
box, or that the robot was controlling the boom box).

F. Natural Language Understanding (NLU)

1) Quantitative: Survey results for Wilcoxon signed-rank
test are shown in Table VI. A total of 112 participants (=
74.7%) correctly identified the robot’s NLU capability.

2) Qualitative Analysis: Likes/Dislikes— In their open-
ended responses, participants expressed preferring cluttered

TABLE VI: NLU results sorted by pcor-

Combination CLES  pcor
Clarity

Cluttered + 3D / Sparse + 3D 0.536  .092

Cluttered + 3D / Sparse + Flat 0.546 245

Cluttered + 3D / Cluttered + Flat  0.52 749

Cluttered + Flat / Sparse + Flat 0.527 .999
Cluttered + Flat / Sparse + 3D 0.517 .999
Sparse + 3D / Sparse + Flat 0.51 .999
Visual Appeal
Cluttered + Flat / Sparse + Flat 0.526  .325
Cluttered + Flat / Cluttered + 3D 0.518 183
Cluttered + Flat / Sparse + 3D 0.532  .999
Cluttered + 3D / Sparse + Flat 0.509  .999
Sparse + Flat / Sparse + 3D 0.507 .999
Cluttered + 3D / Sparse + 3D 0.517 .999

and sparse displays in approximately equal measure, which
is consistent with our analysis of the quantitative ratings.
Participants who preferred cluttered displays valued the
additional information and context provided by the additional
axes and labels (e.g., P56: “The word "probabilities" helped
to make clear what the robot was showing.”). Conversely,
participants who preferred sparse displays described non
cluttered displays as "cleaner" and less confusing to look at
(e.g.,P16: “They were less cluttered with labels than the ones
that had the understanding and probability labels”, P102:
“The ones I scored lower had too much going on and made it
a bit confusing”). Participants cited mainly aesthetic reasons
for their ratings of the 3D and 2D graphs (e.g.P14: “T liked
the bar graphs that were 3d, since they fit the overall aesthetic
of the video better").

Suggested improvements— Participants indicated that the
videos should be longer and show more interaction. Specifi-
cally, they formed the assumption that the robot talked back
to the human, and were interested in observing how the robot
would form a response based on the information it collected
(e.g., P12: “Showing a response from the robot would help
understand how it decides what response it takes”). They
also suggested displaying more information about the robot’s
“thought processes" (e.g., P14: “It would be helpful to know
which specific words are given more weight than others in
determining which meaning. I also have to imagine some
words would be classified into both categories, which would
be helpful to be able to see visually™).

Other unique factors— Participants hypothesized about
other kinds of speech the robot understands and how the
robot might act on its interpretations. Their suggestions
involved testing the robot’s knowledge or showing how it
functions in varied situations (e.g., P10: “Could there be a
graph for the robots understanding of body language aside
from verbal communication?”, P122: “Ask more question to
test its knowledge base").

VI. DISCUSSION

This work presented Virtual Design Elements (VDEs) for
6 robot signals, using an AMT study to validate their designs



for clarity and visual appeal. Some VDEs consistently scored
higher than others, such as visualizations that employed the
pyramid for the camera and the box design over the mesh
for face detection. In some other cases, there was not a
consistently better VDE: different groups of users preferred
different VDEs. In LiDAR visualizations, participants who
preferred dots also preferred the trail due to the fan shape,
while those who preferred lines did not want the trails
due to the clutter. In navigation visualizations, a group of
participants preferred fewer visual stimuli (e.g., those who
preferred arrows + no trail).

Common signal-agnostic themes emerged in qualitative
responses for the salience of the visual given the background
as well as including more textual or verbal information. For
salience, many participants cited VDEs disappearing into the
background or being too small (e.g., face meshes). Enlarging
the objects in the scene to make them more salient, however,
does not appeal to everyone. A possible solution is making
visualizations adapt to the background and change colors
dynamically to improve saliency.

Further, participants suggested that we include both a
verbal and text-based description of the scene to make things
clearer (i.e., not relying on the visualizations alone). But
introducing more objects in the scene would also introduce
clutter. To make visualizations clear for all types of users
they have to adapt to different preferences.

We provided the baseline for the design of VDEs for
different signals and identified groups of users based on
visual stimuli. We hope in the future to work on finding
characteristics to identify user groups and to adapt the
visualizations to different user groups. These visualizations
serve as a basis for future signal design work.

VII. CITATION DIVERSITY STATEMENT

Recent work in several fields of science has identified a
bias in citation practices such that papers from women and
other minority scholars are undercited relative to the number
of papers in the field. We recognize this bias and have worked
diligently to ensure that we are referencing appropriate
papers with fair gender and racial author inclusion. Please
see the SVTE wiki for more information (linked in Sec. IV).
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