
PoseToCode: Exploring Design Considerations
toward a Usable Block-Based Programming and

Embodied Learning System
Nisha Chatwani*

Viterbi School of Engineering
Dept. of Computer Science

University of Southern California
Los Angeles, USA

email: nchatwan@usc.edu

Chloe Kuo*
Viterbi School of Engineering

Dept. of Computer Science
University of Southern California

Los Angeles, USA
email: cmkuo@usc.edu

Thomas R. Groechel*
Viterbi School of Engineering

Dept. of Computer Science
University of Southern California

Los Angeles, USA
email: groechel@usc.edu

Maja J Matarić
Viterbi School of Engineering

Dept. of Computer Science
University of Southern California

Los Angeles, USA
email: mataric@usc.edu

Abstract—As interest and need for computer science skills
continue to grow, educators have been teaching block-based
programming languages to young students. Such languages are
intuitive and widely available, but have not as yet explored
embodied (i.e., kinesthetic) learning techniques. To explore the
use of embodied learning for teaching programming, we created
PoseToCode (P2C), a web-based embodied learning programming
activity in which students perform physical poses with their arms
to create code blocks that control an on-screen robot. We first
conducted a pilot study to identify key P2C design considerations.
We used those insights to finalize P2C and then deployed it
in a local 5th grade class (n=24, 10 students completed all
surveys) to measure P2C usability, compare it to a seated block-
based programming activity (Code.org), identify new design
considerations, and explore if P2C increased student curiosity
in learning coding. Our results support P2C as a usable system
design, show no difference in student curiosity when compared
to a traditional block-based programming language, and identify
potential improvements to our design considerations for future
activities that integrate embodied learning with block-based
programming. This work aims to inform the process of creating
usable and effective systems for block-based programming and
embodied learning activities.

Index Terms—embodied learning, block-based programming,
education, human-computer interaction

I. INTRODUCTION

Computer programming is a challenging subject to learn;
educators have been exploring ways to make it more accessible
to students [1]. With computer programming skills (i.e., coding
skills) becoming increasingly more desirable for students
interested in pursuing science, technology, engineering, and
math (STEM), block-based coding activities are often used to
introduce basic coding concepts through a simple interface.

*Equal Contribution

Figure 1: PoseToCode Exercise 3: Build a Cake. The user (top left)
must physically perform poses (bottom left) to create a sequence of
codeblocks (bottom right), which, when executed, instruct the virtual
robot (middle) to construct a cake (top right). The robot is displayed
near the top of the screen because the following exercise involves
programming objects underneath it.

Block-based programming exercises have become widespread
in recent years as programming is being taught to even
younger students [2]. Block-based programming is the use
of dragging and dropping code blocks that snap together in
order to make a program or series of instructions in a natural
language [3]. Code blocks can have slots allowing for other
blocks to be inserted, and code blocks can also represent
higher level coding structures, such as loops, conditional
statements, and functions. Past research has compared block-
programming to text-programming activities in classrooms [4]
and identified properties of block-based coding activities that
contribute to the activity’s convenience [5], such as the plug-
and-play functionality and the ability to clearly see what each
code block accomplishes, making the learning activity more



intuitive than text-based programming activities.
Block-based programming languages are focused on men-

talistic (i.e., non-kinesthetic) learning. As the COVID-19 pan-
demic has demonstrated, mentalistic learning can become dif-
ficult and tiresome for many students [6]. Embodied learning,
on the other hand, integrates the body with the mind through
movement based-learning. Research in embodied learning has
shown the general approach to have a positive effect on
children’s learning outcomes [7]. Inspired by this literature,
we aimed to develop a block-based programming environment
that supports embodied learning, since, to the best of our
knowledge, no such kinesthetic block-based programming
environment exists.

To address this gap, we created PoseToCode (P2C), which
combines embodied learning with block-based programming
to create a usable system with the end goal of increasing
student curiosity and understanding of programming. P2C
(Figure 1) is an embodied learning block-based coding activity
where students perform poses to create code blocks that guide
a virtual robot through a series of exercises. We created a
set of design considerations for P2C discovered in informal
pilot testing. To validate P2C design, we deployed it in
a local 5th grade classroom of 24 students. We measured
usability and performed a comparison to a traditional block-
based programming activity, and analyzed the study results
to develop future design considerations for making P2C more
intuitive and easier to use. The results of the study support
P2C as a usable design and identify improvements for future
coding languages that integrate embodied learning and block-
based programming. We have made P2C open-source and have
posted a publicly accessible demonstration and repository.

II. BACKGROUND

This research builds on past work relating to block-based
programming and embodied (i.e., kinesthetic) learning.

A. Block-Based Programming

Block-based programming exercises have become very pop-
ular because coding blocks are usually easier to interpret than
text-based code [5]. With interest in STEM education dropping
off in middle and high school [8], block-based programming
provides a way to introduce coding to students at a young
age in order to nurture curiosity about computer science.
Block-based programming exercises allow novice program-
mers to develop quickly because they use component-based
programming, wherein code instructions are partitioned into
distinct functionalities [9]. This approach promotes reusability
of software components, as well as flexibility in replacing
components with code that has the same functionality [10],
making it easier for students without extensive programming
experience to put components together and build more com-
plex programs.

The most popular block programming environments like
Scratch [11] (Figure 2) and Code.org [12] provide users with
the opportunity to explore different parts of programming such
as loops and conditional statements, allowing users to make

Figure 2: Scratch: A popular block-based programming environment
that allows users to program virtual characters to execute sequences
of actions [11].

games and create artwork with ease [5]. The plug-and-play
nature of block-based programming makes it more appealing
to students compared to text-based programming.

Recent work has compared student perceptions of block-
based programming and traditional programming. A 5-week
study in a high school computer science class revealed that
the students using a block-based coding environment retained
more programming knowledge and showed greater interest in
learning coding than the students using a text-based program-
ming environment [4]. Studies have also been conducted to
explore what students find beneficial and effective in block-
based programming environments [5]. The results showed
that students recognized the individual block colors, natural
language block labels, and drag-and-drop functionality of
block programming environments made them visually more
clear [5]. Our work aims to utilize these known positive
aspects of block-based programming and integrate them with
embodied learning.

B. Embodied Learning

Embodied learning has been recognized as an alternative
to traditional mentalistic (i.e., non-kinesthetic) learning [7].
Embodied learning (i.e., kinesthetic learning) is the set of
“pedagogical approaches that focus on the non-mental factors
involved in learning, and that signal the importance of the
body and feelings [13].”

Embodied learning has been shown to promote engagement
by increasing student curiosity about topics they are learning.
Past work has explored teaching methods that promote en-
gagement through embodied learning in the classroom [14].
A study on gesture-based learning used a Microsoft Kinect
sensor and application to create an interactive learning envi-
ronment in which students moved their body to learn about
the solar system [15]. The study results showed that gesture-
based learning resulted in students wanting to learn more,
and they felt more engaged in the learning process. The

https://posetocode.web.app/tutorial.html
https://github.com/interaction-lab/PoseToCode


positive outcomes of gesture-based learning–increased student
engagement and curiosity about the topic–inspired our work.

Embodied learning has also been shown to be beneficial
in improving youth cognition and academic performance. A
study conducted in elementary school classrooms used motion-
based educational games to implement embodied learning,
and demonstrated positive impacts on the students’ cognitive
skills, including their short-term memory, and their linguistic
academic performance [14].

Given its potential, embodied learning has been explored
in computer science education. One study examined the ef-
fects of teaching middle and high school students introduc-
tory programming concepts through a gesture-based interface.
While the results were not significant, the results validated
the promise of engaging students in programming through
embodied learning activities [16]. Our work further expands on
the potential benefits of embodied learning in early computer
science education.

III. POSETOCODE DESIGN

A. Technical Design

Figure 3: PoseToCode Exercise (Level 2): Student (top left) posing to
create code blocks (bottom right) that guide the virtual robot to build
a snowman. A) Flipped video feed with the MediaPipe detected pose
drawn. B) Grid of pose images and progress bars for each pose. C)
Virtual robot that performs instructions from code blocks. D) Goal
state image. E) Blockly workspace with crated code blocks.

PoseToCode (P2C) enables users to create and execute code
by posing with their body. The P2C interface (Figure 3) has
the user’s video feed (A) in the top left corner where the
Mediapipe pose detection library [17] draws lines showing
landmarks on the user’s body. Directly below the video feed,
a grid shows a set of progress bars (B), with images depicting
the virtual robot performing a pose; each pose image is
labelled to indicate what code block it will create. The virtual
robot (C) is in the middle of the screen, and in the top right
corner, there is an image of the goal state (D) indicating
what the code blocks should produce to complete the exercise.
Lastly, the Blockly workspace with the code blocks (E)
created so far is on the right of the visual interface.

In P2C, the user’s poses are recognized with Google Medi-
apipe pose detection software [17] executing at 60Hz. At time
t, the pose key points are run through a deep neural network
to map each arm to {HIGH, MED, LOW, NONE}. Based on
the arm mappings, the corresponding pose progress bar (e.g.,

{Left: HIGH, Right: MED} → “Run Code”) fills at a rate of
1.2∗∆(t, t −1) while all other progress bars decay at the rate
of 0.8∗∆(t, t −1). When the user holds a pose for 4 seconds,
a custom Blockly [18] code block that corresponds to that
pose is created. Code blocks are instructions that control a
virtual robot on the screen; they can be created, erased, and
executed. If the user’s executing code reaches the goal state,
they are moved to the next exercise. Alternatively, if the code
fails to reach the goal state, the user must continue attempting
the same challenge until they succeed or their time spent on
the activity reaches the 10-minute limit. We chose that time
limit based on pilot testing the activity and ensuring that it fit
into the available classroom time.

Figure 4: PoseToCode Exercise 1: Choreographing a dance routine
for the virtual robot

A full P2C activity is composed of a series of three chal-
lenges for the user to complete within 10 minutes. The process
consists of creating code blocks by posing and then executing
all of the created code blocks. To complete the first challenge
(Figure 4), the user must instruct the virtual robot to perform
a dance routine of four or more dance moves. To complete the
second challenge (Figure 3), the user must instruct the robot
to build a snowman. To complete the third challenge (Figure
1), the user must instruct the robot to construct a frosted three-
tiered cake. After all three challenges are completed, the user
moves on to a freeplay mode challenge until the time limit is
reached.

B. Pilot Study Insights About Design Considerations

We performed an informal pilot test of P2C with two
engineering students at our university, using the snowman
building exercise. We gained the following insights about P2C
design considerations:

• Accessibility across low-end computers: Schools use a
variety of laptops with a wide range of processing
power and operating systems. Therefore, we created
PoseToCode to be operating-system agnostic, executing
via the web at 60Hz on the currently most popular
Chromebook with a webcam.

• Accessibility at a distance: Multiple interface elements
are needed to accommodate students who stood away
from the computer while completing the programming
exercises.
– Visibility: Code blocks must have clear visibility, re-

quiring them to be large, and therefore also enforcing
having fewer on-screen components.



(a) Original pose key with individual bars for each arm.

(b) Updated pose key where pose bars fill up directly.

Figure 5: Original (a) and updated (b) pose key designs. The original
design showed each individual arm state and a pose map. Participants
found this difficult to map the arm states to each pose. The updated
design directly filled up each respective pose.

– Webcam as the only input source: We piloted different
interfaces (e.g., space bar pressing) but participants
did not wish to step to and away from the computer,
preferring to only use their body pose as input.

• Real time input and feedback: The webcam continually
collects input from the user at 60Hz, resulting in the
following considerations:
– Direct pose key The original pose key (Fig-

ure 5a) consisted of left and right arm states
({HIGH,MED,LOW,NONE}) with only the accumu-
lated states shown to the user, not the state of the best
current pose. When the progress bar corresponding to
the state from each arm reached 100% completion,
the mapped pose produced the corresponding code
block. Many pilot users cited this as complicated
as they needed to read the arm states and then the
respective texted-based pose map. To address this, we
developed an updated direct pose key (Figure 5b) that
combines the state of the arms into one pose state that
corresponds directly to a progress bar.

– Reactive and persistent pose bars: To increase reactiv-
ity, the best pose progress bar at time t increases at
the rate of 1.2∗∆(t, t −1)% while all other bars decay
at the rate of 0.8∗∆(t, t −1)%. The slower decay rate
(0.8) compared to the growth rate (1.2) allows for a
semi-persistent pose meter, because the progress bars

grow faster than they shrink. For example, when a user
is doing run code pose, if their left arm goes out of
frame, the run code meter decays more slowly than it
grows. Thus when the user brings their arm back into
the frame, the progress of the run code pose is easily
recovered.

– Both arms down not used as input: Users need to take
time to think about their input. The most common pose
while thinking was leaving both arms at their sides,
leading to a {L=LOW, R=LOW} classification.

IV. METHODS

We used the insights from the pilot study to design the
following full user study.

A. Hypotheses

Hypothesis 1 (H1): Users will evaluate PoseToCode to be a
usable system.

B. Procedure

A single-session within-subject study was conducted virtu-
ally over Zoom with a local 5th grade class in the context of
a K-12 STEM outreach event. The study was approved by the
University’s Institutional Review Board (IRB #UP-20-01171).

Figure 6: Code.org: Dance Party 2019 block programming activity
that aims to teach basic coding concepts by guiding users to code a
dance routine for a virtual character [12].

The student participants were randomly assigned to one of
two conditions: 1) PoseToCode programming activity first; and
2) Code.org [12] Dance Party 2019 activity (Figure 6) first,
a drag-and-drop block programming exercise giving students
instructions to create a dance routine for a virtual character.
We chose Code.org’s Dance Party 2019 Activity because,
similarly to PoseToCode, it teaches sequential code logic, and
code blocks are used as instructions for a virtual character.
Each student participant used a Chromebook to complete the
activities.

Student participants first completed a demographic survey.
They then engaged in their first coding activity for up to
10 minutes, followed by a post-activity survey. The student
participants then moved to their second activity, followed by
a second post-activity survey. Finally, the student participants
were given a final survey comparing the two activities. The
student participants were allowed to end an activity early at
any point, in which case they were automatically directed to
the next step in the study procedure. A diagram of the study
procedure is shown in Figure 7.



Figure 7: Diagram of the study procedure: pre-study survey, two
coding activities, post-activity surveys after each activity, and an
activity preference survey.

This study was conducted virtually, given the COVID-19
pandemic. The virtual format of the study constrained the
ability to provide clarifications and assistance to the student
participants to only the Zoom chat function, where the students
asked questions via this function. A single teacher in the
classroom had to physically move to each individual student
participant to answer their questions. Conducting the study
in person has the potential to make student participants’
experience more enjoyable.

C. Participants

A local Los Angeles 5th grade class of 24 students (7
male, 16 female) was recruited. All student participants were
volunteers and were given no form of compensation. Prior
to the study, formal consent was obtained from each students’
legal guardian and child assent was obtained from each student
participant. A total of 10 participants (5 male, 5 female) com-
pleted all surveys and both programming activities. This paper
reports on the data and analyses from those 10 participants.
We recognize this could lead to survivorship bias, but this
was chosen to reduce possible ordering effects and to use all
pairwise data.

In the pre-survey, we asked student participants what pro-
gramming education platforms, if any, they had used in the
past. All 10 indicated that they had previous technical expe-
rience with Scratch and two indicated that they also had past
experience with Code.org. Additionally, we asked student par-
ticipants to indicate their level of agreement with the statement
“I want to learn more about computer programming.” Of the
10 participants, 5 strongly agreed with the statement, and the
other 5 agreed with the statement.

D. Data Collection

The pre-study surveys collected data on the students’ prior
exposure to programming. The post-activity surveys obtained
system usability scores (SUS) [19], aiming to assess the
perceived activity difficulty for PoseToCode and Code.org, and
to capture the student participants’ attitudes towards program-
ming after each activity. The final post-study survey obtained
each student’s preferred activity between PoseToCode and
Code.org, as well as qualitative data via a write-in form on
why they preferred one activity over the other.

P2C behavioral data were automatically collected in order
to 1) find behavioral data correlations for usability; and 2)
create a dataset to compare future iterations of P2C to. As
the student participants performed the PoseToCode activity,
behavioral data were collected consisting of the time each
student took to complete the activity, the number of exercises
each student successfully completed within the time limit, and
the number of code blocks created throughout the activity.

V. RESULTS

Figure 8: Bar graph comparing SUS scores for Code.org and P2C
for all 10 student participants (Ok = 25-59, Good = 60-89, Excellent
= 90-100 [20]).

A. Quantitative Results

To explore design considerations about PoseToCode, we
adapted the System Usability Scale (SUS) [19] questionnaire
for young students in order to compare usability compared
to the Code.org activity. PoseToCode yielded a median SUS
score of 63.75, slightly below the SUS average of 68, and
Code.org yielded a median of 75, above average. A SUS
score between 68 and 89 indicates that the system has “good”
or above average usability, and PoseToCode’s SUS score is
within the 35-40th percentile [20]. The statistical power of
the SUS scores generated are low since there are only 10
responses. Thus, this supports hypothesis 1 but leaves room
for improvement. Figure 8 shows the difference in SUS scores
between Code.org and P2C. Mann-Whitney tests indicated that
PoseToCode (Mdn = 4) is more difficult than Code.org (Mdn
= 5) with conditions (U = 20, p = .020).



A Pearson’s r correlation indicated no significant relation-
ship between total time spent on the PoseToCode activity and
SUS score (rs(10) = -0.367). Similarly, Pearson’s r correlation
did not yield statistical significance between the number
of code blocks created by a student participant during the
PoseToCode activity and SUS score (rs(10) = -0.252). Both
post-activity surveys asked participants how much they agree
with the statement “I want to learn more about computer
programming.” Mann-Whitney tests revealed an insignificant
difference between the responses for PoseToCode (Mdn = 4
(Agree)) and Code.org (Mdn = 5 (Strongly Agree)) conditions
(U = 41, p = .480).

B. Qualitative Results

The qualitative results from the post-study survey showed
that 5 of 10 student participants preferred PoseToCode over
Code.org. For the participants who started with PoseToCode,
4 of 5 preferred PoseToCode, and for the participants who
started with Code.org, 4 out of 5 preferred Code.org. Two
themes emerged from analyzing the free responses, as follows.

1) PoseToCode is more active than than Code.org: Partic-
ipants who preferred PoseToCode found PoseToCode to be a
more active and engaging activity than Code.org. Three of five
participants who preferred PoseToCode over Code.org used
the word fun to describe PoseToCode in their reasoning for
choosing their preference. Only one student out of five who
preferred the Code.org activity over PoseToCode described
Code.org as fun. P3 indicated that they preferred PoseToCode
because they get to be active and move around, and similarly,
another participant noted that with PoseToCode, you do more
activity and more exercise than Code.org.

2) Code.org is easier to use: Student participants who
preferred Code.org found Code.org easier to use than Pose-
ToCode because it had fewer software bugs when compared
to PoseToCode. For example, P1 wrote about Code.org, It’s
much more easy to use. (I like coding this way) while P2
wrote, in Code.org it’s simple and fun and it’s a good way
to pass the time but PoseToCode is super frustrating and got
me annoyed because of glitched like when it highlights your
screen green and then kicks you out. Three participants wrote
in the final survey that PoseToCode was frustrating because it
glitched often, making Code.org more desirable. Additionally,
two participants wrote that Code.org gave more instruction
than PoseToCode and provided more guidance on how to be
successful in the activity.

VI. DISCUSSION

This work explored design considerations and validated
the usability of PoseToCode (P2C), an embodied learning
block-based programming language. Half of the 5th grade
student participants who completed all of the surveys preferred
P2C over Code.org but this may be linked to an ordering
effect. Students who preferred P2C referred to it as being
more fun and engaging while those who preferred Code.org
found it easier to use and less buggy. While some students
reported a buggy P2C, we still see moderate to high usability

scores of many of the students (Figure 8). We believe this
indicates the high potential of P2C as an engaging activity
with straightforward room for technical improvement.

We observed some student participants helping one another
with PoseToCode. This is worth exploring toward developing
collaborative programming activities. The trend of student
participants who preferred PoseToCode stating that it was
more engaging and active than Code.org indicates a positive
feature about PoseToCode and the way its embodied learning
focus distinguishes it from standard mentalistic programming
activities like Code.org. On the other hand, a potential reason
why more participants preferred Code.org is that students
are generally more familiar with Code.org’s teaching style of
programming, therefore making it more intuitive and easier to
use than PoseToCode.

A. Limitations and Future Work

The most cited issues during the study were the technical
glitches that occurred as students interacted with PoseToCode.
One participant described being “kicked out” of the activity
after performing the run code pose stopped recognizing their
poses from their video feed. A set of unit tests and integration
tests need to be designed to interact with the system. Another
flawed design consideration noted by a student was that the
PoseToCode instructions were unclear. This problem should
be addressed with a video tutorial before the main activity
that shows students how to create code blocks, execute the
code, reset the code, and indicate that they have completed a
task.

Some students stayed seated during PoseToCode and some
performed the activity while standing. Because PoseToCode
was designed to be a standing activity, those who stayed seated
may not have been able to have the same range of motion and
movement experience as those who interacted while standing,
as intended. Study instructions should make it clear that the
interaction should be done while standing.

The surveys we used were potentially too long and tedious
for the student participants; while 24 students participated
in the exercises, only 10 completed all the surveys and are
included in the analysis. A future study should take the student
age into account when selecting the survey tools. Additionally,
when data are collected in person, individual interviews with
students could yield additional insights not easily gathered via
Zoom.

VII. CONCLUSION

This work explored introducing embodied learning capa-
bilities into block-based programming toward encouraging
student curiosity for coding. We explored how to design a
usable system. Through a pilot study and a full study with
5th graders, we learned about key design considerations and
needed improvements forming a basis for designing web-
accessible embodied (kinesthetic) activities like PoseToCode.
P2C is open-sourced and shown in a publicly accessible
repository and demonstration.

https://github.com/interaction-lab/PoseToCode
https://posetocode.web.app/tutorial.html


ACKNOWLEDGMENTS

This work was supported by the National Science Foun-
dation (NSF) under award IIS-1925083 and University of
Southern California’s Viterbi School of Engineering under the
Merit Research Award and Viterbi Fellowship Award.

VIII. CITATION DIVERSITY STATEMENT

Recent work in several fields of science has identified a
bias in citation practices such that papers from women and
other minority scholars are undercited relative to the number of
papers in the field [21]–[25]. We recognize this bias and have
worked diligently to ensure that we are referencing appropriate
papers with fair gender and racial author inclusion. First, we
predicted the gender of the first and last author of each citation
using images of authors. By this measure, our references con-
tain 27% woman(first)/woman(last), 15% man/woman, 12%
woman/man, and 46% man/man. This method has limitations
since images and names used to predict genders may not be
entirely accurate and this method does not account for non-
binary, transgender, and intersex people.

REFERENCES

[1] J. Schilling and R. Klamma, “The difficult bridge between university
and industry: a case study in computer science teaching,” Assessment &
Evaluation in Higher Education, vol. 35, no. 4, pp. 367–380, 2010.

[2] N. Zamin, H. Ab Rahim, K. Savita, E. Bhattacharyya, M. Zaffar, and
S. N. Katijah Mohd Jamil, “Learning block programming using scratch
among school children in malaysia and australia: An exploratory study,”
in 2018 4th International Conference on Computer and Information
Sciences (ICCOINS), pp. 1–6, 2018.

[3] T. W. Price and T. Barnes, “Comparing textual and block interfaces
in a novice programming environment,” in Proceedings of the Eleventh
Annual International Conference on International Computing Education
Research, ICER ’15, (New York, NY, USA), p. 91–99, Association for
Computing Machinery, 2015.

[4] D. Weintrop and U. Wilensky, “Comparing block-based and text-based
programming in high school computer science classrooms,” ACM Trans.
Comput. Educ., vol. 18, oct 2017.

[5] D. Weintrop and U. Wilensky, “To block or not to block, that is
the question: Students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children, IDC ’15, (New York, NY, USA), p. 199–208, Association
for Computing Machinery, 2015.

[6] E. Eika, “Learning in higher education under the covid-19 pandemic:
Were students more engaged or less?,” International Journal of English
Linguistics, vol. 11, no. 3, p. 96, 2021.

[7] M. Macedonia, “Embodied learning: why at school the mind needs the
body,” Frontiers in psychology, p. 2098, 2019.

[8] T. L. Pittinsky and N. Diamante, “Going beyond fun in stem,” Phi Delta
Kappan, vol. 97, no. 2, pp. 47–51, 2015.

[9] S. N. H. Mohamad, A. Patel, Y. Tew, R. Latih, and Q. Qassim,
“Principles and dynamics of block-based programming approach,” in
2011 IEEE Symposium on Computers Informatics, pp. 340–345, 2011.

[10] A. Seyfi and A. Patel, “Briefly introduced and comparatively analysed:
Agile sd, component-based se, aspect-oriented sd and mashups,” in 2010
International Symposium on Information Technology, vol. 2, pp. 977–
982, 2010.

[11] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.,
“Scratch: programming for all,” Communications of the ACM, vol. 52,
no. 11, pp. 60–67, 2009.

[12] F. Kalelioğlu, “A new way of teaching programming skills to k-12
students: Code. org,” Computers in Human Behavior, vol. 52, pp. 200–
210, 2015.

[13] A. Paniagua and D. Istance, Teachers as Designers of Learning Environ-
ments: The Importance of Innovative Pedagogies. Educational Research
and Innovation. ERIC, 2018.

[14] P. Kosmas, A. Ioannou, and P. Zaphiris, “Implementing embodied
learning in the classroom: effects on children’s memory and language
skills,” Educational Media International, vol. 56, no. 1, pp. 59–74, 2019.

[15] M. A. Shakroum, K. W. Wong, and C. Fung, “The effectiveness of
the gesture-based learning system (gbls) and its impact on learning
experience,” Journal of Information Technology Education: Research,
vol. 15, pp. 191–210, 2016.

[16] L. Streeter and J. Gauch, “Teaching introductory programming concepts
through a gesture-based interface,” in International Conference on
Human-Computer Interaction, pp. 116–123, Springer, 2018.

[17] C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays,
F. Zhang, C.-L. Chang, M. G. Yong, J. Lee, et al., “Medi-
apipe: A framework for building perception pipelines,” arXiv preprint
arXiv:1906.08172, 2019.

[18] E. Pasternak, R. Fenichel, and A. N. Marshall, “Tips for creating a
block language with blockly,” in 2017 IEEE blocks and beyond workshop
(B&B), pp. 21–24, IEEE, 2017.

[19] A. Bangor, P. Kortum, and J. Miller, “Determining what individual sus
scores mean: Adding an adjective rating scale,” Journal of usability
studies, vol. 4, no. 3, pp. 114–123, 2009.

[20] B. Klug, “An overview of the system usability scale in library website
and system usability testing,” Weave: Journal of Library User Experi-
ence, vol. 1, no. 6, 2017.

[21] N. Caplar, S. Tacchella, and S. Birrer, “Quantitative evaluation of
gender bias in astronomical publications from citation counts,” Nature
Astronomy, vol. 1, no. 6, pp. 1–5, 2017.

[22] M. L. Dion, J. L. Sumner, and S. M. Mitchell, “Gendered citation
patterns across political science and social science methodology fields,”
Political analysis, vol. 26, no. 3, pp. 312–327, 2018.

[23] J. D. Dworkin, K. A. Linn, E. G. Teich, P. Zurn, R. T. Shinohara,
and D. S. Bassett, “The extent and drivers of gender imbalance in
neuroscience reference lists,” Nature neuroscience, vol. 23, no. 8,
pp. 918–926, 2020.

[24] D. Maliniak, R. Powers, and B. F. Walter, “The gender citation gap
in international relations,” International Organization, vol. 67, no. 4,
pp. 889–922, 2013.

[25] S. M. Mitchell, S. Lange, and H. Brus, “Gendered citation patterns
in international relations journals,” International Studies Perspectives,
vol. 14, no. 4, pp. 485–492, 2013.


	Introduction
	Background
	Block-Based Programming
	Embodied Learning

	PoseToCode Design
	Technical Design
	Pilot Study Insights About Design Considerations

	Methods
	Hypotheses
	Procedure
	Participants
	Data Collection

	Results
	Quantitative Results
	Qualitative Results
	PoseToCode is more active than than Code.org
	Code.org is easier to use


	Discussion
	Limitations and Future Work

	Conclusion
	Citation Diversity Statement
	References

